【题目】如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度数:
(2)求证:DM∥BC.
【答案】
(1)解:∵BD⊥AC,EF⊥AC,
∴BD∥EF,
∴∠EFG=∠1=35°,
∴∠GFC=90°+35°=125°
(2)证明:∵BD∥EF,
∴∠2=∠CBD,
∴∠1=∠CBD,
∴GF∥BC,
∵∠AMD=∠AGF,
∴MD∥GF,
∴DM∥BC
【解析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠EFG=∠1=35°,再根据角的和差关系可求∠GFC的度数;(2)根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.
【考点精析】掌握平行线的判定是解答本题的根本,需要知道同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
科目:初中数学 来源: 题型:
【题目】如图,线段AC、BD交于点M,过B、D两点分别作AC的垂线段BF、DE,AB=CD.
(1)若∠A=∠C,求证FM=EM;
(2)若FM=EM,则∠A=∠C.是真命题吗?(直接判断,不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,∠C=90°,且AB=AD,连接BD,过点A作BD的垂线,交BC于E,若EC=3cm,CD=4cm,则梯形ABCD的面积是_________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元
B.(3a+2b)元
C.(2a+3b)元
D.5(a+b)元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( )
A. 1.32×109B. 1.32×108C. 1.32×107D. 1.32×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若FE=4,FC=2,求⊙O的半径及CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形是矩形,点、的坐标分别为, .点是线段上的动点(与端点、不重合).过点作直线交折线于点.当点在线段上时,若矩形关于直线的对称图形为四边形,试探究与矩形的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com