精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在平行四边形ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF,求证:BE=DF.
分析:解决此题要证△ABE≌△CDF.利用平行四边形的性质即可求得:DC=AB,∠BAE=∠DCF;利用SAS证得.
解答:证明:∵四边形ABCD是平行四边形,
∴DC=AB,DC∥AB.
∴∠DCA=∠BAC.
∴∠BAE=∠DCF.
在△ABE和△CDF中
AB=CD
∠BAE=∠DCF
AE=CF

∴△ABE≌△CDF(SAS).
∴BE=DF.
点评:此题考查了平行四边形的性质和全等三角形的判定.解题时要注意选择适宜的判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABC0中,已知点A、C两点的坐标为A(
5
5
),C(2
5
,0).
(1)求点B的坐标.
(2)将平行四边形ABCO向左平移
5
个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形ABCO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.
(2)如图2,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南平模拟)如图,已知四边形ABCD.请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予证明.
关系:①AD∥BC;②AB=CD;③∠B+∠C=180°;④∠A=∠C.
已知:在四边形ABCD中,
.(填序号,写出一种情况即可)  
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形OABC中,已知点A、C两点的坐标为A (
3
3
),C(2
3
,0).
(1)填空:点B的坐标是
(3
3
3
(3
3
3

(2)将平行四边形OABC向左平移
3
个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在平面直角坐标系xOy中,直线AB与x轴、y轴的交点分别为A、B,OB=3,,将∠OBA对折,使点O的对应点H恰好落在直线AB上,折痕交x轴于点C,

(1)求过A、B、C三点的抛物线解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四

边形?若存在,求出点P的坐标;若不存在,说明理由;

(3)若点Q是抛物线上一个动点,使得以A、B、Q为顶点并且以AB为直角边的直角三角形,直角写出Q点坐标。

查看答案和解析>>

同步练习册答案