精英家教网 > 初中数学 > 题目详情
如图,在Rt△AGB中,∠G=90°,∠A=30°,以GB为边在GB的下方作正方形GBEH,HE交AB于点F,以AB为边在AB的上方作正方形ABCD,连接CG,若GB=1,则CG2=   
【答案】分析:作GM⊥BC于M,由四边形ABCD是正方形可以得出AB=BC,∠ABC=90°,由,∠G=90°,∠A=30°,可以得出∠GBA=60°,从而得到∠GBM=30°,由GB=1可以求出GM=,BM=,可以求出CM=2-,在Rt△GMC中,由勾股定理就可以求出CG2的值.
解答:解:作GM⊥BC于M,
∴∠GMC=∠GMB=90°.
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°.
∵∠G=90°,∠A=30°,
∴∠GBA=60°,AB=2GB
∴∠GBM=30°,
∴GM=GB.
∵GB=1,
∴AB=BC=2,GM=
在Rt△GMB中由勾股定理,得
MB=
∴MC=2-
在Rt△GMC中,由勾股定理,得
CG2=GM2+MC2
=+
=5-2

故答案为:5-2
点评:本题考查了正方形的性质,含30度角的直角三角形的性质,勾股定理的运用.在解答中制造直角三角形运用勾股定理是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.
(Ⅰ)请写出图中一对全等的三角形
Rt△ADE≌Rt△AFE
Rt△ADE≌Rt△AFE
(写出一对即可).
(Ⅱ)有下列结论:
①BG=GC;②AG∥CF;③S△FGC=3;④图中与∠AGB相等的角有5个.
其中,正确结论的序号是
①②
①②
(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙湾区二模)如图,在Rt△AGB中,∠G=90°,∠A=30°,以GB为边在GB的下方作正方形GBEH,HE交AB于点F,以AB为边在AB的上方作正方形ABCD,连接CG,若GB=1,则CG2=
5-2
3
5-2
3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图,在Rt△AGB中,∠G=90°,∠A=30°,以GB为边在GB的下方作正方形GBEH,HE交AB于点F,以AB为边在AB的上方作正方形ABCD,连接CG,若GB=1,则CG2=________.

查看答案和解析>>

同步练习册答案