精英家教网 > 初中数学 > 题目详情

若∠α=50°,则它的余角是________°.

练习册系列答案
相关习题

科目:初中数学 来源:风华金帆同步训练·数学·七年级下册(新课标人教版) 新课标人教版 题型:022

在△ABC中,∠A,∠B,∠C是它的三个内角.

(1)若∠A=50°,∠B=∠C,则∠B=________.

(2)若∠A∶∠B∶∠C=1∶2∶3,则∠A=________,∠B=________,∠C=________.

(3)若∠A+∠B=∠C,则∠C=________.

(4)若∠A=35°,∠B比∠C大35°,则∠B=________.

(5)若∠A-∠B=∠C-∠A,则∠A=________.

(6)若一个角是另一个角的6倍,而这两个角的和比第三个角大44°,则这个三角形中最大的角的度数是________.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:044

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x).

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根据x≥25,舍去x2=25-

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:044

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x)

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+5,x2=25-5.根据x≥25,舍去x2=25-5

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+5米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 人教课标七年级版 2009-2010学年 第19-26期 总第175-182期 人教课标版 题型:022

若∠A50°,则它的余角度数为________

查看答案和解析>>

同步练习册答案