精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,二次函数的图象过A(-1,-2)、B(1,0)两点.

(1)求此二次函数的解析式并画出二次函数图象;
(2)点P(t,0)是x轴上的一个动点,过点P作x轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.
(1),作图见解析;(2)-1<t<1.

试题分析:(1)把A(-1,-2)、B(1,0)分别代入得到关于m、n的方程组,求出m、n即可得到二次函数的解析式,由此作出二次函数图象;
(2)观察函数图象得到当点M位于点N的上方时,M点只能在线段AB上(不含端点),则t的范围为-1<t<1.
试题解析:(1)把A(-1,-2)、B(1,0)分别代入
,解得.
所以二次函数的解析式为.
作图如下:

(2)-1<t<1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2–kx+k–1(k>2).

(1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点;
(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若,求抛物线的表达式;
(3)以(2)中的抛物线上一点P(m,n)为圆心,1为半径作圆,直接写出:当m取何值时,x轴与相离、相切、相交.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

动物园计划用长为120米的铁丝围成如图所示的兔笼,(不包括顶棚)供学习小组的同学参观,其中一面靠墙,(墙足够长)怎样设计围成的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,顶点为(4,1)的抛物线交轴于点,交轴于,两点(点在点的左侧),已知点坐标为(6,0).

(1)求此抛物线的解析式;
(2)联结AB,过点作线段的垂线交抛物线于点,如果以点为圆心的圆与抛物线的对称轴相切,先补全图形,再判断直线与⊙的位置关系并加以证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间.问:当点运动到什么位置时,的面积最大?求出的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(4,3),(3,0).

(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图像经过怎样的平移得到的图像?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.

(1)求点D的坐标;
(2)求经过O、D、B三点的抛物线的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(   )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是(   )
A.B.;
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小明从右边的二次函数图象中,观察得出了下面的五条信息:①,②,③函数的最小值为,④当时,,⑤当时,(6)对称轴是直线x=2.你认为其中正确的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案