【题目】如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
【答案】解:连接AC,如图所示:
∵∠B=90°,
∴△ABC为直角三角形,
又∵AB=3,BC=4,
∴根据勾股定理得:AC==5,
又∵CD=12,AD=13,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2 ,
∴△ACD为直角三角形,∠ACD=90°,
则S四边形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.
故四边形ABCD的面积是36.
【解析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
科目:初中数学 来源: 题型:
【题目】某方便面厂10月份生产方便面100吨,这样1至10月份生产量恰好完成全年的生产任务,为了满足市场需要,计划到年底再生产231吨方便面,这样就超额全年生产任务的21%,则11、12月的月平均增长率为( )
A.10%
B.31%
C.13%
D.11%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x(件),其中x>0.
若在甲地销售,每件售价y(元)与x之间的函数关系式为y=,每件成本为20元,设此时的年销售利润为w甲(元)(利润=销售额-成本);
若在乙地销售,受各种不确定因素的影响,每件成本为a元(a为常数,15≤a≤25 ),每件售价为106元,销售x(件)每年还需缴纳元的附加费,设此时的年销售利润为w乙(元)(利润=销售额-成本-附加费);
(1)当a=16时且x=100时,w乙= 元;
(2)求w甲与x之间的函数关系式(不必写出x的取值范围),并求x为何值时,w甲最大以及最大值是多少?
(3)为完成x件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚走路时发现自己的影子越走越长,这是因为( )
A. 从路灯下走开,离路灯越来越远B. 走到路灯下,离路灯越来越近
C. 人与路灯的距离与影子长短无关D. 路灯的灯光越来越亮
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com