精英家教网 > 初中数学 > 题目详情

如图,梯形ABCD中,AD∥BC,∠D=90°.以AB为直径作⊙O交BC于点F,CD的中点E恰好在⊙O上.
(1)CD是⊙O的切线吗?请说明理由;
(2)若AD=2,BC=6,求数学公式的长度(结果保留π).

解:(1)CD是⊙O的切线.理由如下:
连接OE.
∵O是AB中点,E是CD中点,
∴OE是直角梯形ABCD的中位线,
∴OE∥AD∥BC,
∴∠OEC=∠D=90°,
又∵OE是⊙O的半径,
∴CD是⊙O的切线;

(2)连接OF、AF.
由(1)得OE==4,
∴OB=OF=4,
∵AB是⊙O的直径,
∴∠AFB=90°,
∵直角梯形ABCD中,∠C=∠D=90°,
∴四边形AFCD是矩形.
∴CF=AD=2,
∴BF=BC-CF=4,
∴OB=OF=BF=4,
∴∠BOF=60°,
的长度==π.
分析:(1)连接OE,由于OE分别是AB、CD中点,可知OE是梯形ABCD的中位线,从而有OE∥AD∥BC,而∠D=90°,易求∠OED=90°,从而可知CD是⊙O切线;
(2)连接OF、AF,利用中位线定理可知OE=4,由于AB是直径,那么∠AFB=90°,即∠AFC=90°,易证四边形AFCD是矩形,于是CF=AD=2,那么BF=6-2=4,而OB=OF=OE=4,于是OB=OF=BF=4,即△BOF是等边三角形,即∠BOF=60°,利用弧长公式即可求弧BF.
点评:本题考查了梯形中位线定理和性质、切线的判定、等边三角形的判定和性质、矩形的判定和性质、弧长的计算.解题的关键是作辅助线,连接OE、OF、AF,构造矩形AFCD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案