精英家教网 > 初中数学 > 题目详情

如图,已知?ABCD的对角线AC、BD相交于点O,过点O任作一直线分别交AD、CB的延长线于E、F,求证:OE=OF.

证明:在?ABCD中,AO=CO,AD∥BC,
∴∠E=∠F,∠EAO=∠FCO,
在△AOE和△COF中,
∴△AOE≌△COF(AAS),
∴OE=OF.
分析:根据平行四边形的对边平行可得AD∥BC,然后根据两直线平行,内错角相等可得∠E=∠F,∠EAO=∠FCO,又因为平行四边形的对角线互相平分,所以,AO=CO,然后利用“角角边”证明△AOE和△COF全等,根据全等三角形对应边相等即可证明.
点评:本题考查了平行四边形的对边平行,对角线互相平分的性质,以及全等三角形的判定与性质,证明两边相等,就证明这两边所在的三角形全等,是几何证明中常用的方法,一定要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,已知?ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是
3

查看答案和解析>>

科目:初中数学 来源: 题型:

26、(1)探究规律:如图,已知?ABCD,试用三种方法将它分成面积相等的两部分;

(2)由上述方法,你能得到什么一般性的结论;
(3)解决问题:有兄弟俩分家时,原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口水井P,如图所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知?ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.
(1)试说明DE=BC;
(2)试问AB与DG+FC之间有何数量关系?写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知ABCD是圆的内接四边形,对角线AC和BD相交于E,BC=CD=4,AE=6,如果线段BE和DE的长都是整数,则BD的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知ABCD是圆O的内接四边形,AB=BD,BM⊥AC于M,求证:AM=DC+CM.

查看答案和解析>>

同步练习册答案