精英家教网 > 初中数学 > 题目详情
精英家教网在正方形ABCD中,O是对角线AC的中点,P是对角线AC上的一动点,过点P作PF⊥CD于点F,如图(1),当点P与点O重合时,显然有DF=CF.如图(2),若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E,
(1)求证:DF=EF;
(2)求证:PC-PA=
2
CE
分析:(1)要证明DF=EF,连接PD,证明PD=PE,利用等腰三角形的性质,底边上三线合一,可以得出结论.
(2)由CE=CF-EF,又有PC和CF的关系、PA和EF的关系,结合到一起可以求解.
解答:精英家教网证明:如图①连接PD,∵四边形ABCD是正方形,
AC平分∠BCD,CB=CD,△BCP≌△DCP
∴∠PBC=∠PDC,PB=PD
∵PB⊥PE,∠BCD=90°,
∴∠PBC+∠PEC=360°-∠BPE-∠BCE=180°
∵∠PEC+∠PED=180°,
∴∠PBC=∠PED,
∴∠PED=∠PBC=∠PDC,
∴PD=PE,
∵PF⊥CD,
∴DF=EF.

(2)如图②,过点P作PH⊥AD于点H,
由(1)知:PA=
2
PH=
2
DF=
2
EF
PC=
2
CF
∴PC-PA=
2
(CF-EF),
即PC-PA=
2
CE.
点评:本题考查了正方形的性质,合理的作出辅助线,利用各边之间的关系,通过转换的思想求证.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案