精英家教网 > 初中数学 > 题目详情

菱形的对角线交点为O,以O为圆心,O到菱形一边的距离为半径的圆与另三边的位置关系是________.

相切
分析:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,根据面积法即可计算斜边的高相等,即可解题.
解答:证明:菱形对角线互相垂直平分,
所以AO=CO,BO=DO,AB=BC=CD=DA,
∴△ABO≌△BCO≌△CDO≌△DAO,
∴△ABO、△BCO、△CDO、△DAO的面积相等,
又∵AB=BC=CD=DA,
∴△ABO、△BCO、△CDO、△DAO斜边上的高相等,
即O到AB、BC、CD、DA的距离相等,
∴O到菱形一边的距离为半径的圆与另三边的位置关系是相切,
故答案为:相切.
点评:本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了全等三角形的证明以及直线和圆的位置关系,本题中求证△ABO、△BCO、△CDO、△DAO斜边上的高相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、四边形ABCD是菱形,对角线交点为O,若再补充一个条件能四边形ABCD成为正方形,那么这个条件可以是
AC=BD
(填写你认为适当的一个条件).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:平行四边形ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿精英家教网DE、BF折叠四边形ABCD,A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).
(1)求证:四边形ABCD是矩形;
(2)在四边形ABCD中,求
ABBC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

菱形的对角线交点为O,以O为圆心,O到菱形一边的距离为半径的圆与另三边的位置关系是
相切
相切

查看答案和解析>>

科目:初中数学 来源:2005年初中毕业升学考试(江苏淮安卷)数学(带解析) 题型:解答题

已知:ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD, A、C两点恰好都落在O点处,且四边形DEBF为菱形(如图).

⑴求证:四边形ABCD是矩形;
⑵在四边形ABCD中,求的值.

查看答案和解析>>

同步练习册答案