精英家教网 > 初中数学 > 题目详情
(2007•金华)国家级历史文化名城--金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是( )
A.红花,绿花种植面积一定相等
B.紫花,橙花种植面积一定相等
C.红花,蓝花种植面积一定相等
D.蓝花,黄花种植面积一定相等
【答案】分析:根据平行四边形的性质可知GH、BD、EF把一个平行四边形分割成四个小平行四边形,我们知道,一条对角线可以把一个平行四变形的面积一分为二,据此可从图中获得S=S,S绿=S,S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,依此就可找出题中说法错误的.
解答:解:∵AB∥EF∥DC,BC∥GH∥AD
∴GH、BD、EF把一个平行四边形分割成四个小平行四边形,
∴一条对角线可以把一个平行四变形的面积一分为二,
据此可从图中获得S=S,S绿=S,S(紫+黄+绿)=S(橙+红+蓝)
根据等量相减原理知S紫=S橙,
∴A、B、D说法正确,
再考查S与S显然不相等.
故选C.
点评:本题考查的是平行四变形的性质,平行四边形的一条对角线可以把平行四边形分成两个全等的三角形,两条对角线把平行四边形的面积一分为四,同时充分利用等量相加减原理解题,否则容易从直观上对S红等于S蓝产生质疑.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:013

(2007·金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是

[  ]

A.红花、绿花种植面积一定相等

B.紫花、橙花种植面积一定相等

C.红花、蓝花种植面积一定相等

D.蓝花、黄花种植面积一定相等

查看答案和解析>>

科目:初中数学 来源:2009年河北省中考数学模拟试卷(四)(解析版) 题型:解答题

(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:2009年福建省福州市24中质检数学模拟试卷(解析版) 题型:解答题

(2007•金华)如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《四边形》(01)(解析版) 题型:选择题

(2007•金华)国家级历史文化名城--金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是( )
A.红花,绿花种植面积一定相等
B.紫花,橙花种植面积一定相等
C.红花,蓝花种植面积一定相等
D.蓝花,黄花种植面积一定相等

查看答案和解析>>

同步练习册答案