分析 (1)由旋转得出AD=AM再用HL判断出Rt△ADG≌Rt△AMG;
(2)先判断出Rt△ABP≌Rt△AMP,从而得到∠PAG=∠MAP+∠MAG=45°.
(3)先判断出∠AGD=∠PGC,从而判断出∠AGD=∠AGM=∠PGC,得出结论.
解答 解:(1)证明:
∵将正方形ABCD绕点A顺时针旋转角度α得到四边形AMEF,
∴AD=AM,
在△RtADG和Rt△AMG中$\left\{\begin{array}{l}{AD=AM}\\{AG=AG}\end{array}\right.$,
∴Rt△ADG≌Rt△AMG,
(2)在Rt△ABP和Rt△AMP中$\left\{\begin{array}{l}{AM=AB}\\{AP=AP}\end{array}\right.$,
∴Rt△ABP≌Rt△AMP,
∴∠BAP=∠MAP,
由(1)知,∠DAG=∠MAG,
又∵∠DAB=∠BAP+∠MAP+∠DAG+∠MAG=90°,
∴∠PAG=∠MAP+∠MAG=45°,
(3)∵∠1=∠2,且△ADG和△PCG为直角三角形,
∴∠AGD=∠PGC,
由(1)知,△ADG≌△AMG,
∴∠AGD=∠AGM,
∴∠AGD=∠AGM=∠PGC,
又∵∠AGD+∠AGM+∠PGC=180°,
∴∠AGD=60°,
∴∠1=30°
∴∠DAM=60°,
∴∠MAB=30°
∴∠α=30°.
点评 此题是四边形综合题,主要考查了旋转的性质,直角三角形全等的判定和性质,直角三角形的性质,解本题的关键是Rt△ADG≌Rt△AMG和Rt△ABP≌Rt△AMP.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com