精英家教网 > 初中数学 > 题目详情
(2012•扬州)如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据
2
≈1.41,
3
≈1.73)
分析:作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.
解答:解:作AD⊥BC,垂足为D,

由题意得,∠ACD=45°,∠ABD=30°,
设CD=x,在Rt△ACD中,可得AD=x,
在Rt△ABD中,可得BD=
3
x,
又∵BC=20,即x+
3
x=20,
解得:x=10(
3
-1)

∴AC=
2
x≈10.3(海里).
答:A、C之间的距离为10.3海里.
点评:此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•扬州)如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上,如果∠ACB=70°,那么∠P的度数是
40°
40°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•扬州)如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.
(1)①直接写出点E的坐标:
(1,
1
2
(1,
1
2

②求证:AG=CH.
(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.
(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•扬州)如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•扬州)如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果
AB
BC
=
2
3
,那么tan∠DCF的值是
5
2
5
2

查看答案和解析>>

同步练习册答案