精英家教网 > 初中数学 > 题目详情
13.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s的速度沿折线C→A→B向点B运动,同时,点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为ts(0<t<8).
(1)AB=10cm,sinB=$\frac{3}{5}$;
(2)当△BDE是直角三角形时,求t的值;
(3)若四边形CDEF是以CD、DE为一组邻边的平行四边形,
①设?CDEF的面积为Scm2,求S于t的函数关系式;
②是否存在某个时刻t,使?CDEF为菱形?若存在,求出t的值;若不存在,请说明理由.

分析 (1)直接利用勾股定理和三角函数计算;
(2)当△BDE是直角三角形时,∠B不可能为直角,所以分两种情况讨论:i)图1,当∠BED=90°时;ii)图2,当∠EDB=90°时;利用相似求边,再利用同角三角函数值列等式计算求出t的值;
(3)①根据点D的位置分两种情况讨论:点D在边AC上时,0<t≤3;点D在边AB上时,3<t<8;?CDEF的面积都等于△CDE面积的二倍;
②当?CDEF为菱形,对角线CE和DF互相垂直且平分,利用BH=BE+EH列式计算.

解答 解:(1)由勾股定理得:AB=$\sqrt{{6}^{2}+{8}^{2}}$=10,
sinB=$\frac{AC}{AB}=\frac{6}{10}$=$\frac{3}{5}$,
故答案为:10,$\frac{3}{5}$;
(2)如图1,当∠BED=90°时,△BDE是直角三角形,
则BE=t,AC+AD=2t
∴BD=6+10-2t=16-2t,
∵∠BED=∠C=90°,
∴DE∥AC,
∴$\frac{BE}{BC}=\frac{DE}{AC}$,
∴$\frac{t}{8}=\frac{DE}{6}$,
∴DE=$\frac{3t}{4}$,
∵sinB=$\frac{DE}{BD}$=$\frac{3}{5}$,
∴$\frac{\frac{3t}{4}}{16-2t}$=$\frac{3}{5}$,
t=$\frac{64}{13}$;
如图2,当∠EDB=90°时,△BDE是直角三角形,
则BE=t,BD=16-2t,
cosB=$\frac{BD}{BE}=\frac{BC}{AB}$=$\frac{8}{10}$,
∴$\frac{16-2t}{t}$=$\frac{8}{10}$,
∴t=$\frac{40}{7}$;
答:当△BDE是直角三角形时,t的值为$\frac{64}{13}$或$\frac{40}{7}$;
(3)①如图3,当0<t≤3时,BE=t,CD=2t,CE=8-t,
∴S?CDEF=2S△CDE=2×$\frac{1}{2}$×2t×(8-t)=-2t2+16t,
如图4,当3<t<8时,BE=t,CE=8-t,
过D作DH⊥BC,垂足为H,
∴DH∥AC
∴$\frac{DH}{AC}=\frac{BD}{AB}$,
∴$\frac{DH}{6}=\frac{16-2t}{10}$,
∴DH=$\frac{3(16-2t)}{5}$,
∴S?CDEF=2S△CDE=2×$\frac{1}{2}$×CE×DH=CE×DH=(8-t)•$\frac{3(16-2t)}{5}$=$\frac{6}{5}{t}^{2}-\frac{96}{5}t+\frac{384}{5}$;
∴S于t的函数关系式为:当0<t≤3时,S=-2t2+16t,
当3<t<8时,S=$\frac{6}{5}{t}^{2}-\frac{96}{5}t+\frac{384}{5}$;
②存在,如图5,当?CDEF为菱形时,DH⊥CE,
由CD=DE得:CH=HE,
BH=$\frac{4(16-2t)}{5}$,BE=t,EH=$\frac{8-t}{2}$,
∴BH=BE+EH,
∴$\frac{4(16-2t)}{5}$=t+$\frac{8-t}{2}$,
∴t=$\frac{88}{21}$,
即当t=$\frac{88}{21}$时,?CDEF为菱形.

点评 本题是四边形和三角形的综合问题,以两个动点为背景,考查了平行四边形、菱形、直角三角形的性质,考查了利用平行线分线段成比例定理求边长或表示边长;难度适中,是一个不错的四边形的综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.若一次函数y=(m-1)x+m2-1的图象通过原点,则m的值为(  )
A.m=-1B.m=1C.m=±1D.m≠1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.以下各组数为三角形的三条边长,其中能作成直角三角形的是(  )
A.2,$\sqrt{2}$,4B.4,5,6C.2,3,4D.1,$\sqrt{2}$,$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若直角三角形的两边长分别为3和4,则第三条边的长的平方为7或25.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若不等式组$\left\{\begin{array}{l}{5x+2≤3x-5}\\{-x+5<a}\end{array}\right.$无解,则a的取值范围是(  )
A.a$≤\frac{17}{2}$B.a≤12C.a<$\frac{17}{2}$D.a<12

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,已知矩形纸片OABC在平面直角坐标系中,将该纸片沿对角线AC进行折叠,使得点B到达点D的位置,若该纸片的长为4、宽为2,则点D的坐标为(  )
A.(-$\frac{12}{5}$,-$\frac{6}{5}$)B.(-$\frac{12}{5}$,-$\frac{8}{5}$)C.($\frac{12}{5}$,-$\frac{6}{5}$)D.($\frac{12}{5}$,-$\frac{8}{5}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,AD为△ABC的中线,E是AD的中点,若△ABC的面积为40,BD=5,则△BDE中BD边上的高为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,点E在平行四边形ABCD的对角线BD的延长线上.
(1)填空:$\overrightarrow{DA}$+$\overrightarrow{DC}$=$\overrightarrow{DB}$.$\overrightarrow{AE}$-$\overrightarrow{BC}$=$\overrightarrow{DE}$;
(2)求作:$\overrightarrow{AB}$+$\overrightarrow{DE}$(不写作法,保留作图痕迹,写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)计算:$\frac{4}{\sqrt{2}}$+2$\sqrt{18}$-$\sqrt{24}$×$\sqrt{\frac{1}{3}}$.
(2)已知a=$\sqrt{5}$+$\sqrt{2}$,b=$\sqrt{5}$-$\sqrt{2}$,求a2+b2-2ab的值.

查看答案和解析>>

同步练习册答案