10£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÁâÐÎBCDEµÄÒ»±ßBCƽÐÐÓÚxÖᣬµãDÔÚµÚÒ»ÏóÏÞ£¬Ö±Ïßy=$\frac{3}{4}$x+3ÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬²¢¾­¹ýµãE£¬ÇÒµãBÊÇAEµÄÖе㣬µêDÔÚ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£©µÄͼÏóÉÏ£®
£¨1£©ÇóµãBºÍµãDµÄ×ø±ê£»
£¨2£©ÈôµãFÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£©Í¼ÏóÉϵ͝µã£¬µ±¡÷FBCµÄÃæ»ýµÈÓÚÁâÐÎBCDEÃæ»ýµÄ2±¶Ê±£¬ÇóµãFµÄ×ø±ê£»
£¨3£©ÈôµãQÊÇ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£©Í¼ÏóÉϵĵ㣨²»ÓëµãDÖØºÏ£©£¬µãPÊÇÖ±Ïßy=$\frac{3}{4}$x+3Éϵĵ㣬µ±B¡¢C¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬Ö±½Óд³öµãQµÄºá×ø±ê£®

·ÖÎö £¨1£©Í¨¹ýÒ»´Îº¯Êý½âÎöʽÒ×µÃB£¨0£¬3£©ºÍA£¨-4£¬0£©£¬ÔÙÀûÓõãAÓëµãE¹ØÓÚµãBÖÐÐĶԳƵõ½E£¨4£¬6£©£¬Ôò¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËã³öBE=5£¬È»ºó¸ù¾ÝÁâÐεÄÐÔÖʵõ½¡àDE=BE=5£¬BC¡ÎDE£¬È»ºóд³öDµã×ø±ê£»
£¨2£©ÏÈÈ·¶¨·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{54}{x}$£¬ÔÙ¼ÆËãÁâÐεÄÃæ»ýµÃµ½¡÷FBCµÄÃæ»ýµÈÓÚ30£¬ÉèF£¨x£¬y£©£¬ÌÖÂÛ£ºµ±µãFÔÚµÚÒ»ÏóÏÞʱ£¬¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½$\frac{1}{2}$•5•£¨y-3£©=30£¬½âµÃy=15£¬Ôò¼ÆËã¶ÔÓ¦µÄ·´±ÈÀýº¯ÊýÖµµÃµ½´ËʱFµãµÄ×ø±ê£»µ±µãFÔÚµÚÈýÏóÏÞʱ£¬ÀûÓÃͬÑù·½·¨µÃµ½FµãµÄ×ø±ê£»
£¨3£©ÉèP£¨t£¬$\frac{3}{4}$t+3£©£¬ÀûÓÃÆ½ÐÐËıßÐεÄÐÔÖʵÃPQ¡ÎBC£¬PQ=BC=5£¬ÔòQ£¨t-5£¬$\frac{3}{4}$t+3£©»ò£¨t+5£¬$\frac{3}{4}$t+3£©£¬ÌÖÂÛ£ºµ±Qµã×ø±êΪ£¨t-5£¬$\frac{3}{4}$t+3£©£¬ÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÃµ½£¨t-5£©•£¨$\frac{3}{4}$t+3£©=54£¬µ±Qµã×ø±êΪ£¨t+5£¬$\frac{3}{4}$t+3£©£¬Í¬ÑùµÃµ½£¨t+5£©•£¨$\frac{3}{4}$t+3£©=54£¬È»ºó·Ö±ð½â·½³ÌÇó³ötµÄÖµ£¬´Ó¶øµÃµ½Âú×ãÌõ¼þµÄQµãµÄºá×ø±ê£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=$\frac{3}{4}$x+3=3£¬ÔòB£¨0£¬3£©£¬
µ±y=0ʱ£¬$\frac{3}{4}$x+3=0£¬½âµÃx=-4£¬ÔòA£¨-4£¬0£©£¬
¡ßµãBÊÇAEµÄÖе㣬
¡àµãAÓëµãE¹ØÓÚµãBÖÐÐĶԳƣ¬
¡àE£¨4£¬6£©£¬
¡àBE=$\sqrt{{4}^{2}+£¨6-3£©^{2}}$=5£¬
¡ßËıßÐÎBCDEΪÁâÐΣ¬
¡àDE=BE=5£¬BC¡ÎDE£¬
¡ßBCƽÐÐÓÚxÖᣬ
¡àDE¡ÎxÖᣬ
¡àD£¨9£¬6£©£»
£¨2£©°ÑD£¨9£¬6£©´úÈëy=$\frac{k}{x}$µÃk=9¡Á6=54£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy=$\frac{54}{x}$£¬
¡ßÁâÐÎBCDEµÄÃæ»ý=5¡Á3=15£¬
¡ß¡÷FBCµÄÃæ»ýµÈÓÚÁâÐÎBCDEÃæ»ýµÄ2±¶£¬
¡à¡÷FBCµÄÃæ»ýµÈÓÚ30£¬
ÉèF£¨x£¬y£©£¬
µ±µãFÔÚµÚÒ»ÏóÏÞʱ£¬
¡à$\frac{1}{2}$•5•£¨y-3£©=30£¬½âµÃy=15£¬
µ±y=15ʱ£¬$\frac{54}{x}$=15£¬½âµÃx=$\frac{18}{5}$£¬´ËʱFµãµÄ×ø±êΪ£¨$\frac{18}{5}$£¬15£©£»
µ±µãFÔÚµÚÈýÏóÏÞʱ£¬
¡à$\frac{1}{2}$•5•£¨3-y£©=30£¬½âµÃy=-9£¬
µ±y=-9ʱ£¬$\frac{54}{x}$=-9£¬½âµÃx=-6£¬´ËʱFµãµÄ×ø±êΪ£¨-6£¬-9£©£»
×ÛÉÏËùÊö£¬µãFµÄ×ø±êΪ£¨$\frac{18}{5}$£¬15£©»ò£¨-6£¬-9£©£»
£¨3£©ÉèP£¨t£¬$\frac{3}{4}$t+3£©£¬
¡ßB¡¢C¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬
¡àPQ¡ÎBC£¬PQ=BC=5£¬
¡àQ£¨t-5£¬$\frac{3}{4}$t+3£©»ò£¨t+5£¬$\frac{3}{4}$t+3£©£¬
µ±Qµã×ø±êΪ£¨t-5£¬$\frac{3}{4}$t+3£©£¬
°ÑQ£¨t-5£¬$\frac{3}{4}$t+3£©´úÈëy=$\frac{54}{x}$µÃ£¨t-5£©•£¨$\frac{3}{4}$t+3£©=54£¬
ÕûÀíµÃt2-t-92=0£¬½âµÃt1=$\frac{1+\sqrt{329}}{2}$£¬t2=$\frac{1-\sqrt{329}}{2}$£¬
´ËʱQµãµÄºá×ø±êΪ$\frac{-9+\sqrt{329}}{2}$»ò$\frac{-9-\sqrt{329}}{2}$£»
µ±Qµã×ø±êΪ£¨t+5£¬$\frac{3}{4}$t+3£©£¬
°ÑQ£¨t+5£¬$\frac{3}{4}$t+3£©´úÈëy=$\frac{54}{x}$µÃ£¨t+5£©•£¨$\frac{3}{4}$t+3£©=54£¬
ÕûÀíµÃt2+4t-52=0£¬½âµÃt1=4£¨ÉáÈ¥£©£¬t2=-13£¬
´ËʱQµãµÄºá×ø±êΪ-8£¬
×ÛÉÏËùÊö£¬µãQµÄºá×ø±êΪ$\frac{-9+\sqrt{329}}{2}$»ò$\frac{-9-\sqrt{329}}{2}$»ò-8£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢ÁâÐεÄÐÔÖÊºÍÆ½ÐÐËıßÐεÄÐÔÖÊ£»»áÇóÒ»´Îº¯ÊýÓë×ø±êµÄ½»µã×ø±êºÍ½âÒ»Ôª¶þ´Î·½³Ì£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£»»áÔËÓ÷ÖÀàÌÖÂÛµÄ˼Ïë½â¾öÊýѧÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®½ØÖÁĿǰ£¬¹ã¶«Ê¡½ñÄê¹²±¨¸æ13ÀýÕ¯¿¨²¡¶¾²¡Àý£¬Õ¯¿¨²¡¶¾ÊÇÒ»ÖÖͨ¹ýÎó涣ҧ½øÐд«²¥µÄ³æµû²¡¶¾£¬µäÐ͵ÄÖ¢×´°üÀ¨¼±ÐÔÆð²¡µÄµØÈÈ¡¢°ßÇðÕî¡¢¹Ø½ÚÌÛÍ´£¨Ö÷ÒªÀÛ¼°ÊÖ¡¢×ãС¹Ø½Ú£©¡¢½áĤÑ×£¬ÆäËûÖ¢×´°üÀ¨¼¡Í´¡¢Í·Í´¡¢ÑÛ¿ôÍ´¼°ÎÞÁ¦£¬Ò×µ¼ÖÂÐÂÉú¶ùСͷ֢£¬ÆäÖ±¾¶Îª0.00000002Ã×£¬ÓÿÆÑ§¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®2¡Á107Ã×B£®2¡Á108Ã×C£®2¡Á10-7Ã×D£®2¡Á10-8Ã×

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼×ÒÒÁ½µØÏà¾à6000Ã×£¬Àî¾üºÍÍõΰͬʱ´Ó¼×µØ³ö·¢ÔÈËÙǰÍùÒҵأ¬Àî¾üµ½´ïÒҵغóÐÝÏ¢Ò»¶Îʱ¼äºó£¬ÒÔÔ­À´µÄËÙ¶È´Óԭ··µ»Ø£¬ÈçͼËùʾÊÇÁ½ÈËÀë¼×µØµÄ¾àÀëy£¨Ã×£©Óë³ö·¢Ê±¼äx£¨·Ö£©Ö®¼äµÄº¯ÊýͼÏó£®
£¨1£©Àî¾üµÄËÙ¶ÈÊÇ200Ã×/·Ö£¬µ½´ïÒҵغóÐÝÏ¢ÁË15·ÖÖÓ£»
£¨2£©ÇóÁ½ÈËÏàÓöʱÀî¾üÀëÒҵصľàÀ룻
£¨3£©µ±Àî¾ü·µ»Øµ½¼×µØÊ±£¬ÍõΰÊÇ·ñµ½´ï£¬ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬½«ÍêÈ«ÏàͬµÄËĸö³¤·½ÐÎֽƬƴ³ÉÒ»¸ö´óµÄÕý·½ÐΣ¬ÓÃÁ½ÖÖ²»Í¬µÄ·½·¨±íʾÕâ¸ö´óÕý·½ÐεÄÃæ»ý£¬Ôò¿ÉÒԵóöÒ»¸öµÈʽΪ£¨¡¡¡¡£©
A£®£¨a+b£©2=a2+2ab+b2B£®£¨a-b£©2=a2-2ab+b2C£®a2-b2=£¨a+b£©£¨a-b£©D£®£¨a+b£©2=£¨a-b£©2+4ab

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¡ÑOµÄ°ë¾¶Îª5£¬Ô²ÐÄOµ½Ö±ÏßABµÄ¾àÀëΪ4£¬ÔòÖ±ÏßABÓë¡ÑOµÄλÖùØÏµÎª£¨¡¡¡¡£©
A£®ÏàÀëB£®ÏàÇÐC£®ÏཻD£®ÎÞ·¨ÅжÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ËıßÐÎOABCÊÇÆ½ÐÐËıßÐΣ¬ÇÒA£¨4£¬0£©¡¢B£¨6£¬2£©¡¢M£¨4£¬3£©£®ÔÚÆ½ÃæÄÚÓÐÒ»Ìõ¹ýµãMµÄÖ±Ïß½«Æ½ÐÐËıßÐÎOABCµÄÃæ»ý·Ö³ÉÏàµÈµÄÁ½²¿·Ö£¬Çëд³ö¸ÃÖ±Ïߵĺ¯Êý±í´ïʽy=2x-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÓÃÅä·½·¨½âÒ»Ôª¶þ´Î·½³Ì£º2y2+2y-1=0£¬Åä·½ºóµÃ£¨¡¡¡¡£©
A£®£¨y-1£©2=$\frac{3}{2}$B£®£¨y+1£©2=$\frac{3}{2}$C£®£¨y+$\frac{1}{2}$£©2=$\frac{3}{4}$D£®£¨y-$\frac{1}{2}$£©2=$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ£¬º¯Êýy=2xºÍy=ax+4µÄͼÏóÏཻÓÚµãA£¨$\frac{3}{2}$£¬3£©£¬Ôò²»µÈʽ2x£¼ac+4µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®x£¼$\frac{3}{2}$B£®x£¼3C£®x£¾$\frac{3}{2}$D£®x£¾3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Å×ÎïÏßy=£¨x+5£©2-1ÏÈÏòÓÒÆ½ÒÆ4¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ4¸öµ¥Î»£¬µÃµ½Å×ÎïÏߵĽâÎöʽΪ£¨¡¡¡¡£©
A£®y=x2+18x+84B£®y=x2+2x+4C£®y=x2+18x+76D£®y=x2+2x-2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸