精英家教网 > 初中数学 > 题目详情
(1999•上海)已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
求证:MN=AC.

【答案】分析:已知MN∥AC,若MN=AC,则四边形ACMN是平行四边形,因此证四边形ACMN是平行四边形即可,再连接CM,则CM是Rt△ABC斜边上的中线,得CM=MA=AN,然后通过证AN∥CM来得出四边形ANMC是平行四边形,由此得证.
解答:证明:如图,连接CM,(1分)
∵∠ACB=90°,
∴CM=AM=AB,
∴∠MAC=∠MCA,(1分)
∵AM=AN,∴∠AMN=∠N,(1分)
∵MN∥AC,
∴∠NMA=∠MAC,∠CAN+∠N=180°,
∴∠CAN+∠MCA=180°,
∴AN∥CM,(2分)
∴四边形ACMN是平行四边形(1分)
∴MN=AC.(1分)
点评:此题主要考查了直角三角形的性质以及平行四边形的性质和判定,要学会作合适的辅助线来帮助解题.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《图形的相似》(02)(解析版) 题型:解答题

(1999•上海)已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.
(1)求∠POQ的大小(用α表示);
(2)设D是CA延长线上的一个动点,DE与圆O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由;
(3)在(2)的条件下,如果AB=m(m为已知数),cosα=,设AD=x,DE=y,求y关于x的函数解析式(要指出函数的定义域)

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:解答题

(1999•上海)已知反比例函数y=的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a和a+2,求a的值.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《函数基础知识》(02)(解析版) 题型:解答题

(1999•上海)已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.
(1)求∠POQ的大小(用α表示);
(2)设D是CA延长线上的一个动点,DE与圆O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由;
(3)在(2)的条件下,如果AB=m(m为已知数),cosα=,设AD=x,DE=y,求y关于x的函数解析式(要指出函数的定义域)

查看答案和解析>>

科目:初中数学 来源:1999年上海市中考数学试卷(解析版) 题型:解答题

(1999•上海)已知△ABC中,AC=BC,∠CAB=α(定值),圆O的圆心O在AB上,并分别与AC、BC相切于点P、Q.
(1)求∠POQ的大小(用α表示);
(2)设D是CA延长线上的一个动点,DE与圆O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由;
(3)在(2)的条件下,如果AB=m(m为已知数),cosα=,设AD=x,DE=y,求y关于x的函数解析式(要指出函数的定义域)

查看答案和解析>>

科目:初中数学 来源:1999年上海市中考数学试卷(解析版) 题型:解答题

(1999•上海)已知反比例函数y=的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a和a+2,求a的值.

查看答案和解析>>

同步练习册答案