精英家教网 > 初中数学 > 题目详情
15.如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为(  )
A.36°B.44°C.46°D.54°

分析 由对顶角相等可求得∠COB,由垂直可得∠MOB,再根据角的和差可求得答案.

解答 解:
∵∠AOD=136°,
∴∠BOC=136°,
∵MO⊥OB,
∴∠MOB=90°,
∴∠COM=∠BOC-∠MOB=136°-90°=46°,
故选C.

点评 本题主要考查对顶角和垂线的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.(-$\sqrt{7}$)2-$\sqrt{{6}^{2}}$+$\root{3}{-8}$=7-6-2(书写每项化简过程)=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知点A(0,-4),B(8,0)和C(a,-a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若菱形的两条对角线长分别为10cm和24cm,则顺次连接这个菱形四条边的中点所得的四边形的面积是60cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.
(Ⅰ)AE的长等于$\sqrt{5}$;
(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为(  )
A.(3,4)或(2,4)B.(2,4)或(8,4)C.(3,4)或(8,4)D.(3,4)或(2,4)或(8,4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,点E是等边△ABC外一点,点D是BC边上一点,AD=BE,∠CAD=∠CBE,连结ED,EC.
(1)试说明△ADC与△BEC全等的理由;
(2)试判断△DCE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在矩形ABCD中,有以下结论:
①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD.
正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列各数中,介于正整数6和7之间的数是(  )
A.$\sqrt{41}$B.$\sqrt{52}$C.$\sqrt{26}$D.$\root{3}{38}$

查看答案和解析>>

同步练习册答案