精英家教网 > 初中数学 > 题目详情
20、如图:AD⊥BD于D,BC⊥AC于C,,AC=BD,AD与BC相交于点O,
求证:OA=OB.
分析:要证明AO=BO,就要证明∠ABC=∠BAD,通过证明Rt△ACB≌Rt△BDA,问题得证.
解答:证明:∵AD⊥BD,BC⊥AC,AC=BD,AB=BA,
∴Rt△ACB≌Rt△BDA,
∴∠ABC=∠BAD,
∴OA=OB
点评:本题考查了全等三角形的判定和性质,常用的判定方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.在证明中还要注意图形中隐藏条件的挖掘如:本题中的公共边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AD⊥BC于D,BE⊥AC于E,AD、BE交于F,AD=BD.
求证:BF=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BD于C,点E在AD上,∠A=37°,∠B=30°,则∠BED的度数是
97°
97°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图:AD⊥BD于D,BC⊥AC于C,AC=BD,AD与BC相交于点O,
求证:OA=OB.

查看答案和解析>>

科目:初中数学 来源:2004-2005学年广东省汕头市澄海区九年级(上)期末数学试卷(解析版) 题型:解答题

如图:AD⊥BD于D,BC⊥AC于C,AC=BD,AD与BC相交于点O,
求证:OA=OB.

查看答案和解析>>

同步练习册答案