精英家教网 > 初中数学 > 题目详情

已知,如图1,抛物线过点且对称轴为直线点B为直线OA下方的抛物线上一动点,点B的横坐标为m.

(1)求该抛物线的解析式:
(2)若的面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)如图2,过点B作直线轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标,若不存在,请说明理由.

(1)
(2)S
(3)存在,点B为

解析试题分析:(1)根据抛物线过点且对称轴为直线即可求得结果;
(2)过点B作轴,交于点,则可得直线,则可设点,点即可表示出BH,再根据三角形的面积公式即可表示出S关于m的函数关系式,根据二次函数的性质即可求得最大值;
(3)设在抛物线的对称轴上存在点D满足题意,过点D作于点Q,则由(2)有点,点B,即可表示BC,由△BCD是以D为直角顶点的等腰直角三角形可得,则可得,再结合绝对值的性质分类讨论即可.
(1)由题知:解之,得
该抛物线的解析式为:
(2)过点B作轴,交于点由题知直线为:
设点



 
(3)设在抛物线的对称轴上存在点D满足题意,
过点D作于点Q,则由(2)有点,点B

是以D为直角顶点的等腰直角三角形
即是:
解之:(舍去),
时,

解之:(舍去)
时,

综上,满足条件的点B为.
考点:二次函数的综合题
点评:本题是一道综合性的题目,主要考查了学生对二次函数的综合应用能力,是中考压轴题,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图1,抛物线y=ax2+bx过点A(6,3),且对称轴为直线x=
52
.点B为直线OA下方的抛物线上一动点,点B的横坐标为m.
(1)求该抛物线的解析式;
(2)若△OAB的面积为S.求S关于m的函数关系式,并求出S的最大值;
(3)如图2,过点B作直线BC∥y轴,交线段OA于点C,在抛物线的对称轴上是否存在点D,使△BCD是以D为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点B的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大安市模拟)已知:如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于C点.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”.这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鄂州)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=
ED+OPED•OP
,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,抛物线C1y=
1
3
(x-m)2+n
(m>0)的顶点为A,与y轴相交于点B,抛物线C2y=-
1
3
(x+m)2-n
的顶点为C,并与y轴相交于点D,其中点A、B、C、D中的任意三点都不在同一条直线
(1)判断四边形ABCD的形状,并说明理由;
(2)如图2,若抛物线y=
1
3
(x-m)2+n
 (m>0)的顶点A落在x轴上时,四边形ABCD恰好是正方形,请你确定m,n的值;
(3)是否存在m,n的值,使四边形ABCD是邻边之比为1:
3
 的矩形?若存在,请求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宝安区二模)已知:如图1,抛物线经过点O、A、B三点,四边形OABC是直角梯形,其中点A在x轴上,点C在y轴上,BC∥OA,A(12,0)、B(4,8).
(1)求抛物线所对应的函数关系式;
(2)若D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.几秒钟后线段PD将梯形OABC的面积分成1﹕3两部分?并求出此时P点的坐标;
(3)如图2,作△OBC的外接圆O′,点Q是抛物线上点A、B之间的动点,连接OQ交⊙O′于点M,交AB于点N.当∠BOQ=45°时,求线段MN的长.

查看答案和解析>>

同步练习册答案