精英家教网 > 初中数学 > 题目详情

将边长为8cm的正方形ABCD的四边沿直线l向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是


  1. A.
    (4数学公式π+8π)cm
  2. B.
    (8数学公式π+16π)cm
  3. C.
    (8数学公式π+8π)cm
  4. D.
    (4数学公式π+16π)cm
B
分析:可先计算旋转周时,正方形的顶点A所经过的路线的长,可以看出是四段弧长,根据弧长公式计算即可.
解答:第一次旋转是以点C为圆心,AC为半径,旋转角度是90度,
所以弧长==4 π;
第二次旋转是以点D为圆心,AD为半径,角度是90度,
所以弧长=
第三次旋转是以点A为圆心,所以没有路程;
第四次是以点B为圆心,AB为半径,角度是90度,
所以弧长=
所以旋转一周的弧长共=4 +8π.
所以正方形滚动两周正方形的顶点A所经过的路线的长是8 +16π.
故选B.
点评:本题主要考查了弧长的计算,正确确定A所经过的路线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是(  )
A、4
3
cm
B、4
2
cm
C、4
3
cm
D、4
5
cm

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在F处,折痕为MN,则线段CN的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M,连接BF与EG交于点P.
(1)当点F与AD的中点重合时(如图1):
①△AEF的边AE=
 
cm,EF=
 
cm,线段EG与BF的大小关系是EG
 
BF;
(填“>”、“=”或“<”)
②求△FDM的周长. 
(2)当点F在AD边上除点A、D外的任意位置时(如图2):
③试问第(1)题中线段EG与BF的大小关系是否发生变化?请证明你的结论;
④当点F在何位置时,四边形AEGD的面积S最大?最大值是多少?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

某班甲、乙、丙三位同学进行了一次用正方形纸片折叠探究相关数学问题的课题学习活动.
活动情境:
如图2,将边长为8cm的正方形纸片ABCD沿EG折叠(折痕EG分别与AB、DC交于点E、G),使点B落在AD边上的点 F处,FN与DC交于点M处,连接BF与EG交于点P.
所得结论:
当点F与AD的中点重合时:(如图1)甲、乙、丙三位同学各得到如精英家教网下一个正确结论(或结果):
甲:△AEF的边AE=
 
cm,EF=
 
cm;
乙:△FDM的周长为16cm;
丙:EG=BF.
你的任务:
(1)填充甲同学所得结果中的数据;
(2)写出在乙同学所得结果的求解过程;
(3)当点F在AD边上除点A、D外的任何一处(如图2)时:
①试问乙同学的结果是否发生变化?请证明你的结论;
②丙同学的结论还成立吗?若不成立,请说明理由,若你认为成立,先证明EG=BF,再求出S(S为四边形AEGD的面积)与x(AF=x)的函数关系式,并问当x为何值时,S最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邓州市一模)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN=
3cm
3cm
,AM=
1cm
1cm

查看答案和解析>>

同步练习册答案