精英家教网 > 初中数学 > 题目详情

抛物线的顶点为(3,3),且点(2,-2)在抛物线上,求抛物线的解析式.

解:设抛物线的解析式为y=a(x-3)2+3,
把(2,-2)代入得a×(2-3)2+3=-2,解得a=-5,
所以抛物线的解析式为y=-5(x-3)2+3.
分析:由于已知了抛物线的顶点坐标,则可设顶点式y=a(x-3)2+3,再把(2,-2)代入得到关于a的方程,求出a即可.
点评:本题考查了待定系数法求二次函数解析式:二次函数的解析式有三种常见形式:一般式:y=ax2+bx+c(a,b,c是常数,a≠0); 顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标; 交点式:y=a(x-x1)(x-x2)(a,b,c是常数,a≠0).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,经过原点的抛物线的顶点为P,这条抛物线的对称轴x=2与x轴相交于点A,点B精英家教网、C在这条抛物线上,如果四边形OABC是菱形,
(1)求∠AOC的度数;
(2)求以这条抛物线为图象的二次函数的解析式;
(3)试探究:△ACP是否为直角三角形?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知开口向上的抛物线y=ax2+bx+c与x轴交于A(-3,0)、B(1,0)两点,与y轴交于C点,∠ACB不小于90°.
(1)求点C的坐标(用含a的代数式表示);
(2)求系数a的取值范围;
(3)设抛物线的顶点为D,求△BCD中CD边上的高h的最大值.
(4)设E(-
12
,0)
,当∠ACB=90°,在线段AC上是否存在点F,使得直线EF将△ABC的面积平分?若存在,求出点F的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-
1
4
x2+
3
2
x
的图象如图所示.

(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移k个单位,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
(4)在(2)的条件下,平行于x轴的直线x=t(0<t<k) 分别交AC、BC于E、F两点,试问在x轴上是否存在点P,使得△PEF是等腰直角三角形?若存在,请直接写P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大东区一模)如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),抛物线的顶点为P,连接AC.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;
(3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP?若存在,求出M点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案