精英家教网 > 初中数学 > 题目详情

如图,直线y=-数学公式x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O按顺时针方向旋转α角(0°<α≤360°),可得△COD.

(1)求点A,B的坐标;
(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;
(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;
(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.

解:(1)令x=0,得y=2;令y=0,得x=2
所以A(2,0),B(0,2).
并且OB=2,OA=2,AB=4,∠BAO=30°,∠B=60°.

(2)由旋转可得OB=OD,∠ODE=∠B=60°,
∵∠B=60°,
∴△OBD是等边三角形,∠DOE=90°-60°=30°=∠BAO,
△ODE∽△AOB.

(3)有.
当OC⊥AB时,设垂足为M,这时有∠BOM=30°=∠BAO,∠B=∠B
∴△OMB∽△AOB.
∴α=270°+30°=300°,
即旋转300°.

(4)∵当α=30°时∠BNO=90°,∠D=60°,
∴OD=2,ON=,DN=2-,MN=2-3,△ODP是等边三角形,OP=OD=2.
S阴影=S△OPD-S△DMN
=×2×-(2-)(2-3)
=6-
分析:(1)因为直线y=-x+2与x轴,y轴分别相交于点A,B,所以分别令x=0,y=0,即可得A、B坐标.
并且可得OB=2,OA=2,AB=4,∠BAO=30°,∠B=60°.
(2)利用旋转可得OB=OD,∠ODE=∠B=60°,△OBD是等边三角形,所以可得∠DOE=90°-60°=30°=∠BAO,△ODE∽△AOB;
(3)利用直角三角形斜边上的高的性质可作OC⊥AB,设垂足为M,这时就有∠BOM=30°=∠BAO,∠B=∠B,△ODE∽△AOB,并且α=270°+30°=300°,即旋转300°.
(4)当α=30°时可知∠BNO=90°,∠D=60°,所以OD=2,ON=,DN=2-,MN=2-3,△ODP是等边三角形,OP=OD=2,S阴影=S△OPD-S△DMN,运用公式求面积.
点评:本题需仔细分析题意,结合图形,利用旋转、相似三角形的有关知识来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案