精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
kx
的图象与二次函数y=ax2+x-1的图象相交于点(2,2)
(1)求a和k的值;
(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?
分析:(1)将交点坐标分别代入两个函数的解析式中,即可求得a、k的值;
(2)根据(1)可确定两个函数的解析式;求得二次函数的顶点坐标后,将其代入反比例函数的解析式中进行验证即可.
解答:解:(1)因为二次函数y=ax2+x-1与反比例函数y=
k
x
交于点(2,2)
所以2=4a+2-1,解之得a=
1
4
(2分)
2=
k
2
,所以k=4;(4分)

(2)反比例函数的图象经过二次函数图象的顶点;(5分)
由(1)知,二次函数和反比例函数的关系式分别是y=
1
4
x2+x-1和y=
4
x

因为y=
1
4
x2+x-1=y=
1
4
(x2+4x-4)=
1
4
(x2+4x+4-8)=y=
1
4
[(x+2)2-8]=
1
4
(x+2)2-2,(6分)
所以二次函数图象的顶点坐标是(-2,-2);(7分)
因为x=-2时,y=
4
-2
=-2,所以反比例函数图象经过二次函数图象的顶点.(8分)
点评:此题主要考查了用待定系数法确定函数解析式的方法及二次函数的顶点坐标的求法;在求二次函数的顶点坐标时,要针对题型要灵活地根据已知条件选择配方法和公式法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案