精英家教网 > 初中数学 > 题目详情

如图,DE∥BC,DF∥AB,△ADE的面积为4,△CDF的面积为9,四边形BFDE的面积为________.

12
分析:由DE∥BC,DF∥AB可推出△ADE∽△ACB、△CDF∽△CAB,然后利用相似三角形面积之比等于相似比的平方可得==,又因为+=1,从而建立方程,解出四边形BFDE的面积.
解答:∵DE∥BC,∴△ADE∽△ACB
=,即=
同理,由DF∥AB可得=
+=1,△ADE的面积为4,△CDF的面积为9,
=1,
解得S△ACB=25,
故四边形BFDE的面积为25-9-4=12.
点评:此题主要考查平行线分线段成比例定理和相似三角形面积之比等于相似比的平方的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,DE∥BC,且DB=AE,若AB=5,AC=10,则AE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,DE∥BC,将△ABC沿DE所在的直线折叠,点A正好落在BC边上F处,若∠B=40°,则∠BDF=
100
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,DE∥BC,AD:DB=3:4,则△ADE与△ABC的周长之比为
 
;面积之比为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•广西)如图,DE∥BC,AB=15,AC=9,BD=4,那么AE=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•河北)已知:如图,DE∥BC,AD=3.6,DB=2.4,AC=7.求EC的长.

查看答案和解析>>

同步练习册答案