精英家教网 > 初中数学 > 题目详情
10.如图,平移△ABC可得到△DEF,如果∠C=60°,AE=7cm,AB=4cm,那么∠F=60度,DB=1cm.

分析 根据平移的性质直接写出答案即可.

解答 解:∵平移△ABC可得到△DEF,
∴AB=DE,
∴AD=BE,
∵AE=7cm,AB=4cm,
∴BE=7-4=3cm,
∴AD=BE=3cm,
∴BD=AE-AD-BE=7-6=1cm,
∵∠C=60°,
∴∠F=∠C=60°,
故答案为:60,1.

点评 本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:
①PA+PB+PC+PD的最小值为10;
②若△PAB≌△PCD,则△PAD≌△PBC;
③若S1=S2,则S3=S4
④若△PAB~△PDA,则PA=2.4
其中正确的是①②③④(把所有正确的结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在等腰直角△ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.

(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当AD=2$\sqrt{6}$时,求AE的值
(2)使得CE=$\frac{1}{3}$AC,连接DE,将△CDE沿CD翻折到△CDE′,接AE′交BC于点F,求证:DF=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,一次函数y=x+3的图象与坐标轴分别交于A,B两点,二次函数y=ax2+bx-3a的图象经过点A,B.
(1)求二次函数y=ax2+bx-3a的表达式.
(2)设此抛物线顶点为C,点B关于抛物线对称轴的对称点为D,求证:CD∥AB.
(3)试问直线AB上是否存在点P,使得△BDP与△BCD相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若A=$\frac{201{6}^{2}+201{7}^{2}+1}{2016×2017+1}$,则A的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知方程mx-2=3x的解为x=2,则m=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算
(1)$\left\{\begin{array}{l}{x+y=10}\\{2x-y=20}\end{array}\right.$        
(2)$\sqrt{2\frac{1}{4}}$+$\root{3}{3\frac{3}{8}}$+|3-π|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列说法正确的是(  )
①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体;③-27没有立方根;④对角线互相垂直的四边形是菱形;⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为$\overline{{x}_{甲}}$=82分,$\overline{{x}_{乙}}$=82分,S2=245,S2=190,那么成绩较为整齐的是乙班.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算
(1)(3mn+1)(3mn-1)-8m2n2
(2)(x+2)2-(x+1)(x-1)
(3)[(x+y)2-(x-y)2]÷2xy.

查看答案和解析>>

同步练习册答案