| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{2}$ |
分析 延长AD交⊙O于E,连接BE,BI,求出∠E=90°,根据内心求出∠3=∠4,∠1=∠2,求出∠3=∠5,∠IBE=∠BIE,推出BE=IE,求出AE=2BE,解直角三角形求出tan∠CAD=tan∠BAE=$\frac{BE}{AE}$,即可求出答案.
解答 解:![]()
延长AD交⊙O于E,连接BE,BI,
则∠E=90°,
∵I为△ABC的内心,
∴∠3=∠4,∠1=∠2(∠CAD=∠BAE),
∵∠4=∠5,
∴∠3=∠5,
∴∠2+∠5=∠1+∠3,
∴∠IBE=∠BIE,
∴BE=IE,
∵OI⊥AE,OI过O,
∴AE=2AI,
∴AE=2BE,
∴tan∠CAD=tan∠BAE=$\frac{BE}{AE}$=$\frac{BE}{2BE}$=$\frac{1}{2}$.
故选A.
点评 本题考查了三角形的内切圆和内心,三角形的外接圆和外心,垂径定理,圆周角定理,三角形外角性质,等腰三角形的判定等知识点的应用,正确作出辅助线后求出AE=2BE是解此题的关键,有一定的难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com