精英家教网 > 初中数学 > 题目详情
24、如图,以等腰△ABC的腰AB为⊙O的直径交底边BC于D,DE⊥AC于E.
求证:
(1)DB=DC;
(2)DE为⊙O的切线.
分析:(1)连接AD.根据直径所对的圆周角是直角,得到AD⊥BC,再根据等腰三角形三线合一的性质即可证明;
(2)连接OD,根据三角形的中位线定理得到OD∥AC,结合DE⊥AC得到OD⊥DE,从而证明结论.
解答:
证明:(1)连接AD.
∵AB为⊙O的直径,
∴AD⊥BC,
又AB=AC,
∴BD=CD;

(2)连接OD.
∵OA=OB,BD=CD,
∴OD∥AC,
又DE⊥AC,
∴OD⊥DE,
∴DE为⊙O的切线.
点评:此题综合运用了圆周角定理的推论,即直径所对的圆周角是直角;等腰三角形的性质,即等腰三角形底边上的高也是底边上的中线;三角形的中位线定理以及平行线的性质;切线的判定,即经过半径的外端,且垂直于半径的直线是圆的切线.
注意:构造直径所对的圆周角和连接过切点的半径是圆中常见的辅助线之一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.
(I)求证:DE为⊙O的切线;
(II)若⊙O的半径为5,∠BAC=60°,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:
(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述精英家教网结论是否成立?请说明理由;
(2)如果AB=AC=5cm,sinA=
35
,那么圆心O在AB的什么位置时,⊙O与AC相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感模拟)如图,以等腰△ABC的一腰AB上的点O为圆心,以OB为半径作圆,⊙O交底边BC于点D.过D作⊙O的切线DE,交AC于点E.
(1)求证:DE⊥AC;
(2)若AB=BC=CA=2,问圆心O与点A的距离为多少时,⊙O与AC相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以等腰△ABC的腰AB为直径画半圆O,交AC于E,交BC于D.
(1)求证:D是BC的中点;
(2)若∠BAC=50°,求
DE
的度数.

查看答案和解析>>

同步练习册答案