精英家教网 > 初中数学 > 题目详情

如图,A,B,C三点在同一平面内,从山脚缆车站A测得山顶C的仰角为45°,测得另一缆车站B的仰角为30°,AB间缆绳长500米(自然弯曲忽略不计).(数学公式,精确到1米)
(1)求缆车站B与缆车站A间的垂直距离;
(2)乘缆车达缆车站B,从缆车站B测得山顶C的仰角为60°,求山顶C与缆车站A间的垂直距离.

解:
(1)过B作BD⊥AM于点D.
在Rt△ADB中,
∵∠BAD=30°,AB=500,
∴BD=AB•sin30°=250.
即缆车站B与缆车站A间的垂直距离为250米;

(2)过C作CF垂直于坡底的水平线AM,垂足为点F,
过B作BE∥AF,交CF于点E.
设山顶C与缆车站B间的垂直距离CE=x,
在Rt△CBE中,∠CBE=60°,

在Rt△ADB中,AD=AB•sin60°=250
在Rt△CAF中,∠CAF=45°,
∴AF=CF.


解得

答:山顶与缆车站A间的垂直距离约为683米.
分析:(1)利用30°的正弦值即可求得BD长;
(2)易得AF=CF,设CE为未知数,利用60°的正切值可求得BE长;利用AF=CF可求得CE长,加上(1)中BD长即为山顶C与缆车站A间的垂直距离.
点评:考查仰角的定义,能借助仰角构造直角三角形并解直角三角形是仰角问题常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,A、C、E三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,A、Q、R三点在一条直线上,S为直线外一点,∠AQS=136°,∠QRS=64°,则∠QSR=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A,B,C三点在同一平面内,从山脚缆车站A测得山顶C的仰角为45°,测得另一缆精英家教网车站B的仰角为30°,AB间缆绳长500米(自然弯曲忽略不计).(
3
≈1.73
,精确到1米)
(1)求缆车站B与缆车站A间的垂直距离;
(2)乘缆车达缆车站B,从缆车站B测得山顶C的仰角为60°,求山顶C与缆车站A间的垂直距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A、B、C三点在⊙O上,∠BAC=60°,若⊙O的半径OC为12,则劣弧BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,A,O,B三点在同一直线上,OC,OE分别是∠BOD,∠AOD的平分线,OC与OE有什么位置关系?为什么?

查看答案和解析>>

同步练习册答案