精英家教网 > 初中数学 > 题目详情

已知:如图,抛物线数学公式与x、y轴分别相交于A、B两点,将△AOB绕着点O逆时针旋90°到△A′OB′,且抛物线y=ax2+2ax+c(a≠0)过点A′、B′.
(1)求A、B两点的坐标;
(2)求抛物线y=ax2+2ax+c的解析式;
(3)点D在x轴上,若以B、B′、D为顶点的三角形与△A′B′B相似,求点D的坐标.

解:(1)令=0,
解得:x1=-4,x2=2
∵A点在x轴的负半轴,
∴x2=2(舍去)
∴A(-4,0),
∵点B是抛物线与y轴的交点,
∴B(0,-2);

(2)由题意得A′(0,-4),B′(2,0),
代入y=ax2+2ax+c得

(3)由题意有∠OB'B=45°,∠B′BA′=135°,且=
如果∠B′DB=135°,由于∠OB′B=45°,所以不可能;
如果∠DBB′=135°,由于∠OB′B=45°,所以也不可能;
若∠DB′B=135°,则点D在B'的右侧
时,△BB′D与△A′B′B相似,
得DB′=2或DB′=4,
∴D(4,0)或D(6,0).
分析:(1)令=0,解一元二次方程即可求出A点的坐标,B点是(0,c).
(2)把点A′、B′的坐标代入y=ax2+2ax+c,求出a,c问题得解.
(3)因为相似对应的不唯一性,需要讨论,分别求出满足题意的D的坐标.
点评:本题考查的是二次函数与相似的综合应用,这类试题一般难度较大.解这类问题关键是善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•浦江县模拟)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0),点B的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线 与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京师大附中九年级上学期期中考试数学卷 题型:解答题

 已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

1.(1)求的面积.

2.(2)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源:2013届河南省周口市初一下学期第九章一元一次不等式组检测题 题型:解答题

已知:如图,抛物线轴交于点,与轴交于两点,点的坐标为

(1)求抛物线的解析式及顶点的坐标;

(2)设点是在第一象限内抛物线上的一个动点,求使与四边形面积相等的四边形的点的坐标;

(3)求的面积.

 

查看答案和解析>>

同步练习册答案