精英家教网 > 初中数学 > 题目详情
(2010•黔南州)下列说法正确的是( )
A.随机事件发生的可能性是50%
B.一组数据2,3,3,6,8,5的众数与中位数都是3
C.“打开电视,正在播放关于奥运火炬传递的新闻”是必然事件
D.若甲组数据的方差S2=0.31,乙组数据的方差S2=0.02,则乙组数据比甲组数据稳定
【答案】分析:根据平均数,中位数,众数及方差的概念得到正确结论即可.
解答:解:A、随机事件发生的可能性在0和1之间;
B、一组数据2,3,3,6,8,5的众数是3,中位数是4;
C、“打开电视,正在播放关于奥运火炬传递的新闻”是随机事件;
D、因为方差是衡量一个样本波动大小的量,方差越大,数据的波动就越大.
故选D.
点评:用到的知识点为:随机事件为可能发生,也可能不发生的事件;可能性在0和1之间;方差越小数据的波动性越稳定.
练习册系列答案
相关习题

科目:初中数学 来源:2011-2012学年江苏省苏州市工业园区八年级第二学期数学卷 题型:单选题

(2010•黔南州)如果,则=(  )

A.B.1C.D.2

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(30)(解析版) 题型:解答题

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省台州市临海市杜桥实验中学初三第四次统练数学试卷(解析版) 题型:解答题

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年贵州省黔南州中考数学试卷(解析版) 题型:解答题

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年天津市东丽区中考数学一模试卷(解析版) 题型:解答题

(2010•黔南州)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案