(本题满分8分)为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?
(1)设该学校为新增电脑投资的年平均增长率是x.根据题意,得
11(1+x)2=18.59,------------------------------------------------------2分
1+x=±1.3,
x=30%或-2.3(不合题意,应舍去).
答:设该学校为新增电脑投资的年平均增长率是30%.-----------------------4分
(2)由(1),得
2010年的投资是11(1+30%)=14.3.------------------------------------6分
则该中学三年为新增电脑共投资11+14.3+18.59=43.89(万元)---------- 8分
解析:略
科目:初中数学 来源: 题型:
(本题满分8分)如图,将长方形纸片的两角分别折叠,使顶点B落在B′处,顶点A落在A′处,EC、ED为折痕,并且点E、A′、B′在同一条直线上。若∠BED=320,求∠CED和∠AEC的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分12分)
已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
1.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
2.(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断是否为定值.若是.请求出该定值;若不是.请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分12分)如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E.
1.(1)填空:点A的坐标为 ,点B的坐标为 ,AB的长为 .
2.(2)求点C、D的坐标
3.(3)求抛物线的解析式
4.(4)若抛物线与正方形沿射线AB下滑,直至点C落在轴上时停止,则抛物线上C、E两点间的抛物线所扫过的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分14分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=____ _cm;②求证:EP=AE+DP;
⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分10分)如图,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A点恰好落在DC上,设此点为F,且这时AE:ED=5:3,BE=5,这个矩形的长宽各是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com