精英家教网 > 初中数学 > 题目详情
(2013•溧水县一模)如图,△ABC是边长为4的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连结BD,交AC于F.
(1)猜想BD与DE的位置关系,并证明你的结论;
(2)求△BDE的面积S.
分析:(1)BD与DE垂直,理由为:由平移及等边三角形的性质得到BC=CD,∠BCD=120°,利用等腰三角形的性质及内角和定理求出∠CBD=30°,而∠E=60°,确定出∠BDE为直角,即可得证;
(2)由∠CBD为30°,得到BF为角平分线,利用三线合一得到BF垂直于AC,F为AC的中点,在直角三角形BCF中,由BC与CF长,利用勾股定理求出BF的长,继而确定出BD的长,由平移的性质得到DE=AC,即可求出三角形BDE的面积.
解答:解:(1)垂直,理由为:
由平移的性质得:AB=AC=BC=CE=CD=DE,∠E=∠DCE=∠ABC=60°,
∴∠DCB=120°,
又BC=CD,
∴∠CBD=∠CDB=30°,
∴∠BDE=90°,
∴BD⊥DE;

(2)∵∠CBD=30°,即BF为角平分线,AB=BC,
∴F为AC中点,即FC=2,BF⊥AC,
在Rt△BFC中,根据勾股定理得:BF=2
3

∵BC=CD,CF⊥BD,∴F为BD中点,
∴DB=2BF=4
3

则S△BDE=
1
2
•DB•DE=
1
2
×4
3
×4=8
3
点评:此题考查了等边三角形的性质,勾股定理,以及平移性质,熟练掌握等边三角形的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•溧水县一模)如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是
4
2
4
2
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)在等腰△ABC中,∠C=90°,则cosA=
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)以下问题,不适合用全面调查的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)已知一次函数y=kx+b的图象过点(x1,y1)、(x2,y2),且x2-x1=1时,y2-y1=-2,则k=
-2
-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•溧水县一模)如图,在平面直角坐标系中,A、B为正比例函数y=
3
x
图象上的两点,且OB=2,AB=
2
.点P在y轴上,△BPA是以∠B为顶角的等腰三角形,则OP的长为
3
+1或
3
-1
3
+1或
3
-1

查看答案和解析>>

同步练习册答案