精英家教网 > 初中数学 > 题目详情
抛物线①y=-
1
4
x2
;②y=-
1
3
x2
;③y=-
1
2
x2
.它们的开口由大到小的顺序是(  )
A、①②③B、②③①
C、③①②D、③②①
分析:抛物线的开口大小是由二次项系数a的绝对值的大小确定,|a|越大则开口越小.
解答:解:∵|-
1
4
|<|-
1
3
|<|-
1
2
|,
∴抛物线①开口最大,抛物线③开口最小,
开口由大到小的顺序是①②③.
故选A.
点评:抛物线的开口大小是由|a|的大小确定,是需要记忆的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,抛物线y=-
1
4
x2+
1
4
x+3
与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+bx+c交y轴于点A,点A关于抛物线对称轴的对称点为B(3,-4),直线y=
14
x与抛物线在第一象限的交点为C,连接OB.
(1)填空:b=
 
,c=
 

(2)如图(1),点P为射线OC上的动点,连接BP,设点P的横坐标为x,△OBP的面积为S,求S关于x的函数关系式;
(3)如图(2),点P在直线OC上的运动,点Q在抛物线上运动,问是否存在P、Q,使得以O,B,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=ax2+bx+c与x轴交于A、B两点(点B在点A的右侧,且AB=8),与y轴交于点C,其中点A在x轴的负半轴上,点C在y轴的正半轴上,线段OA、OC的长(OA<OC)是方程x2-14x+48=0的两个根.
(1)求此抛物线的解析式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,抛物线y=-
1
4
x2+
1
4
x+3
与直线y=-
1
4
x-
3
4
交于A、B两点.如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标,则点P(m,n)落在如图1中的抛物线与直线围成区域内(图中阴影部分,含边界)的概率是
7
16
7
16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=-
1
2
x2-(m+3)x+m2-12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.
(1)求抛物线的解析式;
(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;
(3)过(2)中的点E的直线y=
1
4
x+b与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M′、N′,点P为线段MN上一点,点P的横坐标为t,过点P作平行于y轴的直线交(1)中所求抛物线于点Q.是否存在t值,使S精英家教网梯形MM'N'N:S△QMN=35:12?若存在,求出满足条件的t值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案