精英家教网 > 初中数学 > 题目详情

已知点P是正方形ABCD的对角线BD上任一点,PE⊥BC于E,PF⊥CD于F,连PA、EF.猜想并证明线段PA与EF存在着什么关系.

解:猜想:线段PA与EF相等且互相垂直.
证明:延长EP交AD于M,
∵四边形ABCD是正方形,
∴AD∥BC,
∵PE⊥BC,
∴EM⊥AD,
∵P在对角线上,
∴∠MDP=∠FDP=45°,
∴PM=MD,FD=FP,
∵AD⊥CD,PF⊥CD,PM⊥AD,
∴四边形PFDM是矩形,即MD=PF,
∴PM=PF=MD=DF
∴AM=AD-MD=CD-DF=CF=EP,Rt△AMP≌Rt△EPF,
∴EF=AP,∠EFP=∠APM.
延长AP交EF于N,
则∵PF∥AD,
∴∠PAM=∠FPN
∴∠EFP+∠FPN=∠PAM+∠APM=90°
∴△FNP是直角三角形,∠FNP=90°
∴FN⊥AN,即EF⊥AP.
∴线段PA与EF相等且互相垂直.
分析:可通过构建全等三角形来证得,根据正方形的性质我们不难得出两三角形全等的条件.(SAS)
点评:本题主要考查了正方形,矩形的性质,以及全等三角形的判定,利用全等三角形来证线段相等是常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点P是线段AB的黄金分割点,且PA>PB,若S1表示以PA为边的正方形的面积,S2表示长为AB、宽为PB的矩形的面积,那么S1(  )S2
A、>B、=C、<D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海陵区模拟)已知点E是正方形ABCD中的CD的中点,F是边AD上一点,连接FE并延长交BC延长线于点G,AB=6.
(1)求证:CG=DF;
(2)连接BF,若BF>GF,试求AF的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点P是正方形ABCD内一点,连接PA、PB.将△PAB绕点B沿顺时针方向旋转90°到△P1CB的位置.设AB的长为3,PB的长为2,则△PAB旋转到△P1CB的位置的过程中,边PA所扫过的区域(图中阴影部分)的面积为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知点E是正方形ABCD中的CD的中点,F是边AD上一点,连接FE并延长交BC延长线于点G,AB=6.
(1)求证:CG=DF;
(2)连接BF,若BF>GF,试求AF的范围.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年四川省南充市营山县九年级(上)期末数学试卷(解析版) 题型:填空题

如图,已知点P是正方形ABCD内一点,连接PA、PB.将△PAB绕点B沿顺时针方向旋转90°到△P1CB的位置.设AB的长为3,PB的长为2,则△PAB旋转到△P1CB的位置的过程中,边PA所扫过的区域(图中阴影部分)的面积为   

查看答案和解析>>

同步练习册答案