精英家教网 > 初中数学 > 题目详情

在梯形ABCD中,AD∥BC,AB=CD,且DE⊥AD于D,∠EBC=∠CDE,∠ECB=45°.
(1)求证:AB=BE;
(2)延长BE,交CD于F.若CE=数学公式,tan∠CDE=数学公式,求BF的长.

解:(1)证明:延长DE,交BC于G.
∵DE⊥AD于D,∴∠ADE=90°
又AD∥BC,∴∠DGC=∠BGE=∠ADE=90°,
而∠ECB=45°,∴△EGC是等腰直角三角形,
∴EG=CG
在△BEG和△DCG中,
∴△BEG≌△DCG(AAS)
∴BE=CD=AB

(2)连接BD.
∵∠EBC=∠CDE,
∴∠EBC+∠BCD=∠CDE+∠BCD=90°,即∠BFC=90°
∵CE=,∴EG=CG
又tan∠CDE=,∴,∴DG=3
∵△BEG≌△DCG,∴BG=DG=3

∴CD=BE=
法一:∵

法二:经探索得,△BEG∽△BFC,∴,∴

分析:(1)延长DE,交BC于G,通过证明△BEG≌△DCG(AAS),即可得出AB=BE;
(2)连接BD,可先证明BF⊥CD,求出△BCD的面积及CD的长,继而得出答案;或者利用△BEG∽△BFC,,将各边代入求解.
点评:本题考查了梯形、全等三角形和相似三角形的判定与性质等知识,有一定难度,注意这些知识的熟练掌握以便灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,则∠ADC=
140°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AB∥CD,E是AB边上的点,给出下面三个论断:①AD=BC;②DE=CE;③AE=BE.请你以其中的两个论断为条件,填入“已知”栏中,以一个论断作为结论,填入“求证”栏中,使之成为一个正确的命题,并证明之.
已知:如图,在梯形ABCD中,AB∥CD,E是AB边上的点,
AD=BC,AE=BE
AD=BC,AE=BE

求证:
DE=CE
DE=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.
(1)试说明∠ABD=∠CBD.
(2)若∠C=2∠E,试说明AB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,则∠BDC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,点P是下底BC边上的一个动点,从B向C以2cm/s的速度运动,到达点C时停止运动,设运动的时间为t(s).
(1)求BC的长;
(2)当t为何值时,四边形APCD是等腰梯形;
(3)当t为何值时,以A、B、P为顶点的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案