精英家教网 > 初中数学 > 题目详情
在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.   
⑴ 当t为何值时,线段CD的长为4;
⑵ 当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;
⑶ 当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?
(1); (2)  4-<t≤; (3)

试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;
(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当OG<时,直线与圆相交,据此即可求得t的范围;
(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.
(1)过点C作CF⊥AD于点F,

在Rt△AOB中,OA=4,OB=4
∴∠ABO=30°,
由题意得:BC=2t,AD=t,
∵CE⊥BO,
∴在Rt△CEB中,CE=t,EB=t,
∵CF⊥AD,AO⊥BO,
∴四边形CFOE是矩形,
∴OF=CE=t,OE=CF=4-t,
在Rt△CFD中,DF2+CF2=CD2
∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,
解得:t=,t=4,
∵0<t<4,
∴当t=时,线段CD的长是4;
(2)过点O作OG⊥DE于点G(如图2),

∵AD∥CE,AD=CE=t
∴四边形ADEC是平行四边形,
∴DE∥AB
∴∠GEO=30°,
∴OG=OE=(4-t)
当线段DE与⊙O相切时,则OG=
∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.
∴当 4-<t≤时,线段DE与⊙O有两个公共交点;
(3)当⊙C与⊙O外切时,t=
当⊙C与⊙O内切时,t=
∴当t=秒时,两圆相切.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

用配方法解一元二次方程,则方程可变形为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明的家庭作业中有这样一道题:
“如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.

在第n个图中,黑、白瓷砖各有多少块.(用含n的代数式表示)”
小明做完作业后发现这些图案很美.正好小明爸爸的商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.于是他建议爸爸按照图案方式进行装修.已知每块白色瓷砖40元,每块黑色瓷砖20元,贴瓷砖的费用每平方米15元.经测算,瓷砖无须切割,且恰好能完成铺设,总费用需7260元.问两种瓷砖各需买多少块?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,已知两边a=3,b=4,第三边为c.若关于x的方程有两个相等的实数根,则该三角形的面积是          

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知关于x的方程的一个根是2,则m=       ,另一根为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第几个图形中圆和正三角形的个数相等.(      ) .
A.7B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

解方程:x2+3x+1=0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某单位于“三•八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是邻队与旅行社导游收费标准的一段对话:
邻队:组团去“星星竹海”旅游每人收费是多少?
导游:如果人数不超过25人,人均旅游费用为100元.
邻队:超过25人怎样优惠呢?
导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.
该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.
根据上述信息,该单位这次到“星星竹海”观光旅游的共有  人.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

方程的解是          

查看答案和解析>>

同步练习册答案