分析 根据勾股定理求得AB的长,再根据三角形的面积公式求得CD,然后再利用勾股定理计算出AD长即可.
解答 解:∵AC=4,BC=3,
∴AB=5,
∵S△ABC=$\frac{1}{2}$×3×4=$\frac{1}{2}$×5×CD,
∴CD=$\frac{12}{5}$.
∴AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=$\sqrt{16-\frac{144}{25}}$=$\frac{16}{5}$,
故答案为:$\frac{16}{5}$.
点评 此题主要考查了直角三角形面积及勾股定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com