精英家教网 > 初中数学 > 题目详情

【题目】用反证法证明命题三角形中最多有一个角是直角时,下列假设正确的是(  )

A.三角形中最少有一个角是直角

B.三角形中没有一个角是直角

C.三角形中三个角全是直角

D.三角形中有两个或三个角是直角

【答案】D

【解析】

在反证法的步骤中,第一步是假设结论不成立,可据此进行解答.

根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一列单项式:﹣x2 , 3x3 , ﹣5x4 , 7x5 , …,按此规律排列,则第7个单项式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=(m-3)x+5的函数值yx的增大而增大,则(  )

A. m>0 B. m<0 C. m>3 D. m<3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于多项式a3ba2+ab1,下列叙述正确的是(  )

A. 它是四次四项式B. 它是三次四项式

C. 它是四次三项式D. 它是三次三项式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于圆的周长公式C=2πR,下列说法正确的是( )

A. πR是变量,2是常量 B. R是变量,π是常量

C. C是变量,πR是常量 D. CR是变量,2π是常量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】|a|的含义是:数轴上表示数a的点与原点的距离.则|﹣2|的含义是;若|x|=2,则x的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:

(1)扇形统计图中,初赛成绩为1.65m所在扇形图形的圆心角为_ _°;

(2)补全条形统计图;

(3)这组初赛成绩的中位数是 m;

(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是(

A.16
B.12
C.8
D.4

查看答案和解析>>

同步练习册答案