精英家教网 > 初中数学 > 题目详情
7.先化简,再求值.
(1)x(4-x)+(x+1)(x-1),其中,x=$\frac{1}{2}$;
(2)已知x2-2x=2,求(x-1)2+(x+3)(x-3)+(x-3)(x-1)的值.

分析 (1)原式利用单项式乘以多项式,以及平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值;
(2)原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.

解答 解:(1)原式=4x-x2+x2-1=4x-1,
当x=$\frac{1}{2}$时,原式=2-1=1;
(2)原式=x2-2x+1+x2-9+x2-4x+3=3x2-6x-5=3(x2-2x)-5,
当x2-2x=2时,原式=6-5=1.

点评 此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知方程x2-2x+3m=0,若两根之差为-4,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,抛物线y=a(x-m)2+2m-2(其中m>1)顶点为P,与y轴相交于点A(0,m-1).连接并延长PA、PO分别与x轴、抛物线交于点B、C,连接BC,将△PBC绕点P逆时针旋转得△PB′C′,使点C′正好落在抛物线上.
(1)该抛物线的解析式为y=$\frac{1-m}{{m}^{2}}$(x-m)2+2m-2(用含m的式子表示);
(2)求证:BC∥y轴;
(3)若点B′恰好落在线段BC′上,求此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE.当△ABC满足什么条件时,四边形BECD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.比较2$\sqrt{7}$与3$\sqrt{3}$的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.小明、小亮在高为8米的路灯下做游戏,他们发现身高为1.6米的小明在路灯下的影长为1米,身高为1.55米的小亮要想在该路灯下得到一个3.1米长的影子,而且两人的影子要保证在同一直线上,那么两人应该相距8.9或16.9米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)8.25-(+$\frac{1}{4}$)+3$\frac{1}{8}$-(-4$\frac{3}{8}$);
(2)0.75-(-0.125)+(-2$\frac{3}{4}$)+(-4$\frac{1}{8}$);
(3)3$\frac{1}{2}$-(-2$\frac{1}{4}$)+(-$\frac{1}{3}$)-$\frac{1}{4}$-(+$\frac{1}{6}$);
(4)|-2$\frac{1}{4}$|-(-$\frac{3}{4}$)+1-|1-$\frac{1}{2}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知函数y=(m+2)x${\;}^{{m}^{2}+m-4}$是关于x的二次函数
(1)求满足条件的m的值.
(2)m为何值时,抛物线有最低点?求出这个最低点的坐标,此时当x为何值时,y随x的增大而增大?
(3)m为何值时,抛物线有最高点?求出这个最高点的坐标,此时当x为何值时,y随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.选择合适的方法解下列方程组
(1)$\left\{\begin{array}{l}{5x-2y-4=0}\\{x+y-5=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4(x-y-1)=3(1-y)-2}\\{\frac{x}{2}+\frac{y}{3}=2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案