精英家教网 > 初中数学 > 题目详情
(2013•大庆)如图,三角形ABC是边长为1的正三角形,
AB
AC
所对的圆心角均为120°,则图中阴影部分的面积为
3
12
3
12
分析:
AB
AC
相交于点O,连OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及逆时针方向绕点O旋转120°后,阴影部分便合并成△OBC,得到它的面积等于△ABC面积的三分之一,利用等边三角形的面积公式:
3
4
×边长2,即可求得阴影部分的面积.
解答:解:如图,设
AB
AC
相交于点O,连接OA,OB,OC,线段OA将阴影的上方部分分成两个弓形,将这两个弓形分别按顺时针及反时针绕点O旋转120°后,阴影部分便合并成△OBC,它的面积等于△ABC面积的三分之一,
∴S阴影部分=
1
3
×
3
4
×12=
3
12

故答案为:
3
12
点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等边三角形的面积公式:
3
4
×边长2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•大庆)如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=
k2x
(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.
(1)求一次函数的解析式;
(2)求反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:CF=DG;
(2)求出∠FHG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆)如图,平面直角坐标系中,以点C(2,
3
)为圆心,以2为半径的圆与x轴交于A,B两点.
(1)求A,B两点的坐标;
(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆)如图所示,AB是半圆O的直径,AB=8,以AB为一直角边的直角三角形ABC中,∠CAB=30°,AC与半圆交于点D,过点D作BC的垂线DE,垂足为E.
(1)求DE的长;
(2)过点C作AB的平行线l,l与BD的延长线交于点F,求
FDDB
的值.

查看答案和解析>>

同步练习册答案