精英家教网 > 初中数学 > 题目详情
(2009•天水)(1)解方程:2x2-5x+2=0;
(2)已知|a-2|+=0,计算的值.
【答案】分析:(1)用因式分解法求解.
(2)利用两个非负数之和等于0,则这两个非负数均为0,求出a,b的值,然后求代数式的值.
解答:解:(1)∵2x2-5x+2=0
∴(x-2)(2x-1)=0
解得x1=2,x2=

(2)∵|a-2|+=0,
∴a-2=0,b-3=0
∴a=2,b=3;
原式===
点评:(1)因式分解法是解一元二次方程的一种简便方法,要会灵活运用.
(2)利用非负数的性质:两个非负数之和等于0,则这两个非负数均为0,从而来解题.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2009•天水)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2009•天水)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求图象经过点A的反比例函数的解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省名校中考数学模拟试卷(一)(解析版) 题型:解答题

(2009•天水)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省盐城市解放路实验学校中考数学模拟试卷(解析版) 题型:解答题

(2009•天水)如图,在平面直角坐标系xOy中,矩形OEFG的顶点E的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.
(1)判断△OGA和△OMN是否相似,并说明理由;
(2)求图象经过点A的反比例函数的解析式;
(3)设(2)中的反比例函数图象交EF于点B,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:2008年广东省深圳市中考数学试卷(解析版) 题型:解答题

(2009•天水)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

查看答案和解析>>

同步练习册答案