精英家教网 > 初中数学 > 题目详情
15.如图:已知AB=16,点C、D在线段AB上且AC=DB=3; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是(  )
A.0B.3C.5D.8

分析 分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.

解答 解:如图,分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,
即在P的运动过程中,G始终为PH的中点,
所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=16-3-3=10,
∴MN=5,即G的移动路径长为5.
故选C.

点评 本题考查了三角形中位线定理及等边三角形的性质,解答本题的关键是作出辅助线,找到点G移动的规律,判断出其运动路径,综合性较强

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.如图,∠AOB=α,P在∠AOB内,OP=2,M和N分别为OA,OB上一动点,当△PMN的周长为最小值2时,α=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在一次环保知识竞赛中,共有25道题,答对一题得4分,不答得0分,答错扣2分,小明有一道题没有答,但仍被评为优秀(85分或85分以上),问小明至多答错了几道题?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.定义:若两个正多边形边长之比为$\sqrt{2}:1$,则称这两个正多边形为母子多边形;保持各自的周长不变,从母子n边形变成母子(n+1)边形称为母子多边形的一次进化.如图2中的母子四边形就是由图1中的母子三角形进化得到的.
探索:
(1)一对母子三角形中,小三角形的边长为a,则对应的大三角形的边长为$\sqrt{2}a$,面积为$\frac{\sqrt{3}}{2}$a2
(2)由(1)中这对母子三角形进化一次得到的母子多边形的边长为$\frac{3a}{4}$和$\frac{3\sqrt{2}a}{4}$,进化两次得到的母子多边形的边长为$\frac{3a}{5}$和$\frac{3\sqrt{2}a}{5}$,进化n次后,得到的母子多边形的边长为$\frac{3a}{n}$和$\frac{3\sqrt{2}a}{n}$.
应用:
如图,母子四边形FGHI和JHLK是由母子三角形ABC和ECD进化得到的,其中△ECD的边长为2cm,且BCDGHL六点都在同一条直线上,现将母子四边形的顶点G与母子三角形的顶点D重合,且母子四边形以1cm/s的速度匀速向左运动,直至点G与点C重合为止,将两组图形的重叠部分面积记为S(cm2
①请你求出S关于运动时间t(s)的函数解析式,并写出相应的t的取值范围;
②求当t取何值时S最大,此时点G在什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝箍半径增大1米,需增加m米长的铁丝,假设地球的赤道上也有一个铁箍,同样半径增大1米,需增加n米长的铁丝,则m与n的大小关系是m=n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,正方形ABCD的对角线AC与BD相交于点M,正方形MNPQ与正方形ABCD全等,将正方形MNPQ绕点M顺时针旋转,在旋转过程中,射线MN与射线MQ分别交正方形ABCD的边于E、F两点.
(1)试判断ME与MF之间的数量关系,并给出证明.
(2)若将原题中的两个正方形都改为矩形且BC=6,AB=2,如图2,其他条件不变,探索线段ME与线段MF的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10,当折痕的另一端F在AB边上时,求△EFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知Rt△ABC中,∠AOB=90°,$OA=6\sqrt{3}$,∠OAB=30°,点D在线段AO上,连接BD,如图1,过点D作DE⊥AB 于点E.
(1)F为BD的中点,连接OF、EF,若OD=8,求EF的长.
(2)将图1中的△ADE绕点A旋转,使D、E、B三点在一条直线上,如图2,过点O作OG⊥OE交BD于点G.
①求$\frac{GB}{AE}$的值;
②若点F为线段BD的中点,$AD=2\sqrt{3}$,直接写出线段OF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第5个图案需要的棋子数为(  )
A.61B.91C.152D.169

查看答案和解析>>

同步练习册答案