精英家教网 > 初中数学 > 题目详情

如图,若梯形PMNQ是一块绿化地,梯形上底PQ=m,下底MN=n,现在计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻,为了节省费用,园艺师应该把哪两块地种植较便宜的花草?通过计算说明你的理由.

解:∵△PMN和△QMN同底等高,
∴S△PMN=S△QMN
∴S3+S2=S4+S2
即:S3=S4
∵△POQ∽△NOM,
∴QO:OM=PQ:MN=m:n
∴S1:S2=(OQ:OM)2=m2:n2
∴S2=•S1
∵S1:S3=OQ:OM=m:n,
∴S3=•S1
∴(S1+S2)-(S3+S4)=S1+•S1-2••S1=S1(1+-2•)=S1(1-2
∵(1-2>0,
∴S1+S2>S3+S4
即:应该选择S1与S2两块地种植便宜花草.
分析:易得S1和S2;S3和S4应种价格相同的花,为了节省费用,价格便宜的花的种植面积应较大,把其余3个面积都用S1表示,用减法比较即可.
点评:考查相似三角形的应用及三角形面积的比较;比较大小,一般情况下应采用减法;若结果是正数,则被减数大,反之减数大;把其余3个面积都用S1表示是解决本题的突破点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.
(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,若梯形PMNQ是一块绿化地,梯形上底PQ=m,下底MN=n,现在计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻,为了节省费用,园艺师应该把哪两块地种植较便宜的花草?通过计算说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.
(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》中考题集(28):29.8 相似三角形的应用(解析版) 题型:解答题

已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.
(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.

查看答案和解析>>

同步练习册答案