精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系中,半径为2cm的动圆M与y轴交于A、B两点,且保持弦AB长为定值2cm,圆M与x轴没有交点,且圆心M在第一象限内,P是x轴正半轴上一动点,MQ⊥AB于Q,且MP=3cm,设OA=ycm,OP=xcm.
(1)求x、y所满足的关系式,并写出x的取值范围;
(2)当△MOP为等腰三角形时,求相应x的值;
(3)是否存在大于2的实数x,使△MQO∽△OMP?若存在,求出相应的值;若不存在,请说明理由.

解:(1)过M点作MN⊥OA,垂足为N,连接MA,
∵AB=2,MA=2,M为圆心,
∴AQ=AB=1,
∴ON=QM=,MN=y+1,
在Rt△MNP中,MP=3,PN=x-
∴(y+1)2=9-(x-2
∴y=

(2)当△MOP为等腰三角形时,
①若OP=PM=3时,x=3,
②若OM=PM时,x=2
③若OM=OP时,有(y+1)2+3=x2
即9-(x-2+3=x2
解得(舍去);

(3)当△MQO∽△OMP时,有



解得(舍去)但
∴不存在满足条件的实数x,使△MQO∽△OMP.
分析:(1)过M点作MN⊥OA于N,连接MA,在Rt△AMQ中,AQ=AB,利用勾股定理求出MQ=,也就是ON的长度,而OQ=OA+AQ=y+1,在Rt△MNP中,再利用勾股定理列式整理即可得到y与x的关系式,根据被开方数不小于0解不等式即可求出x的取值范围;
(2)因为两条边是腰长不明确,所以分①OP=PM,②OM=PM,③OM=OP三种情况讨论求解;
(3)假设存在,根据相似三角形对应边成比例列出比例式,解方程,如果符合条件,则存在,否则,假设不成立,不存在.
点评:本题考查点较多,有垂径定理、勾股定理、等腰三角形的性质和相似三角形对应边成比例的性质,熟练掌握性质并灵活运用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案