精英家教网 > 初中数学 > 题目详情
(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.
分析:(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ是等边三角形,即可得出答案;
(2)首先利用已知得出△APD≌△CPD,进而得出∠PAD+∠PQD=∠PQC+∠PQD=180°,即可求出;
(3)由(2)得出∠CDB=90°-α,且PQ=QD,进而得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α,得出α的取值范围即可.
解答:解:(1)∵BA=BC,∠BAC=60°,M是AC的中点,
∴BM⊥AC,AM=MC,
∵将线段PA绕点P顺时针旋转2α得到线段PQ,
∴AM=MQ,∠AMQ=120°,
∴CM=MQ,∠CMQ=60°,
∴△CMQ是等边三角形,
∴∠ACQ=60°,
∴∠CDB=30°;

(2)如图2,连接PC,AD,
∵AB=BC,M是AC的中点,
∴BM⊥AC,
即BD为AC的垂直平分线,
∴AD=CD,AP=PC,PD=PD,
在△APD与△CPD中,
AD=CD
PD=PD
PA=PC

∴△APD≌△CPD(SSS),
∴∠ADB=∠CDB,∠PAD=∠PCD,
又∵PQ=PA,
∴PQ=PC,∠ADC=2∠1,∠4=∠PCQ=∠PAD,
∴∠PAD+∠PQD=∠4+∠PQD=180°,
∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°,
∴∠ADC=180°-∠APQ=180°-2α,
∴2∠CDB=180°-2α,
∴∠CDB=90°-α;

(3)如图1,延长BM,CQ交于点D,连接AD,
∵∠CDB=90°-α,且PQ=QD,
∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α,
∵点P不与点B,M重合,
∴∠BAD>∠PAD>∠MAD,
∵点P在线段BM上运动,∠PAD最大为2α,∠PAD最小等于α”,
∴2α>180°-2α>α,
∴45°<α<60°.
点评:此题主要考查了旋转的性质以及全等三角形的判定与性质,得出∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.
例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(-
1
2
,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=
3
4
x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京二模)已知:如图,在直角坐标系xOy中,点A(8,0)、B(0,6),点C在x轴的负半轴上,AB=AC.动点M在x轴上从点C向点A移动,动点N在线段AB上从点A向点B移动,点M、N同时出发,且移动的速度都为每秒1个单位,移动时间为t秒(0<t<10).
(1)设△AMN的面积为y,求y关于t的函数关系解析式;
(2)求四边形MNBC的面积最小是多少?
(3)求时间t为何值时,△AMN是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=
5.5
5.5
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是
3或4
3或4
;当点B的横坐标为4n(n为正整数)时,m=
6n-3
6n-3
(用含n的代数式表示).

查看答案和解析>>

同步练习册答案