精英家教网 > 初中数学 > 题目详情
(2013•玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断(  )
分析:首先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.
解答:解:甲的作法正确;
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠ACN,
∵MN是AC的垂直平分线,
∴AO=CO,
在△AOM和△CON中
∠MAO=∠NCO
AO=CO
∠AOM=∠CON

∴△AOM≌△CON(ASA),
∴MO=NO,
∴四边形ANCM是平行四边形,
∵AC⊥MN,
∴四边形ANCM是菱形;
乙的作法正确;
∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE
∵AF∥BE,且AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴平行四边形ABEF是菱形;
故选:C.
点评:此题主要考查了菱形形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
②四条边都相等的四边形是菱形.
③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•玉林)如图是某手机店今年1-5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉林)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.
(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=
40
,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉林)如图,在直角梯形ABCD中,AD∥BC,AD⊥DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点.
(1)求证:四边形EMCN是矩形;
(2)若AD=2,S梯形ABCD=
152
,求矩形EMCN的长和宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•玉林)如图,抛物线y=-(x-1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(-1,0).
(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

同步练习册答案