精英家教网 > 初中数学 > 题目详情
7.如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1).
(1)当m=$\frac{1}{4}$时,n=-1;
(2)随着点M的转动,当m从$\frac{1}{3}$变化到$\frac{2}{3}$时,点N相应移动的路径长为$\frac{2\sqrt{3}}{3}$.

分析 (1)当m=$\frac{1}{4}$时,连接PM,如图1,点M从点A绕着点P逆时针旋转了一周的$\frac{1}{4}$,从而可得到旋转角∠APM为90°,根据PA=PM可得∠PAM=∠PMA=45°,则有NO=AO=1,即可得到n=-1;
(2)当m从$\frac{1}{3}$变化到$\frac{2}{3}$时,点N相应移动的路经是一条线段,只需考虑始点和终点位置即可解决问题.当m=$\frac{1}{3}$时,连接PM,如图2,点M从点A绕着点P逆时针旋转了一周的$\frac{1}{3}$,从而可得到旋转角为120°,则∠APM=120°,根据PA=PM可得∠PAM=30°,在Rt△AON中运用三角函数可求出ON的长;当m=$\frac{2}{3}$时,连接PM,如图3,点M从点A绕着点P逆时针旋转了一周的$\frac{2}{3}$,从而可得到旋转角为240°,则∠APM=120°,同理可求出ON的长,问题得以解决.

解答 解:(1)当m=$\frac{1}{4}$时,连接PM,如图1,

则有∠APM=$\frac{1}{4}$×360°=90°.
∵PA=PM,∴∠PAM=∠PMA=45°.
∴NO=AO=1,
∴n=-1.
故答案为-1;

(2)①当m=$\frac{1}{3}$时,连接PM,如图2,

∠APM=$\frac{1}{3}×$360°=120°.
∵PA=PM,∴∠PAM=∠PMA=30°.
在Rt△AON中,NO=AO•tan∠OAN=1×$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$;
②当m=$\frac{2}{3}$时,连接PM,如图3,

∠APM=360°-$\frac{2}{3}$×360°=120°,
同理可得:NO=$\frac{\sqrt{3}}{3}$.
综合①、②可得:点N相应移动的路经长为$\frac{\sqrt{3}}{3}$+$\frac{\sqrt{3}}{3}$=$\frac{2\sqrt{3}}{3}$.
故答案为 $\frac{2\sqrt{3}}{3}$.

点评 本题主要考查了旋转角、等腰三角形的性质、三角函数等知识,若动点的运动路径是一条线段,常常可通过考虑临界位置(动点的始点和终点)来解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a$\sqrt{x}$+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.
(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=0万元,a=-360,b=1080;
(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知点A(-4,2),B(-1,-2),平行四边形ABCD的对角线交于坐标原点O.
(1)请直接写出点C、D的坐标;
(2)写出从线段AB到线段CD的变换过程;
(3)直接写出平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:
(1)求本次抽样人数有多少人?
(2)补全条形统计图;
(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是(2,-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).
(1)四个年级被调查人数的中位数是多少?
(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?
(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:
(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;
(2)三本以上的圆心角为72°.
(3)全市有6.7万学生,三本以上有13400人.

查看答案和解析>>

同步练习册答案