精英家教网 > 初中数学 > 题目详情

如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.

(1)求证:AG与⊙O相切.

(2)若AC=6,AB=8,BE=3,求线段OE的长.


(1)证明:如图,

连接OA,

∵OA=OB,GA=GE

∴∠ABO=∠BAO,∠GEA=∠GAE

∵EF⊥BC,

∴∠BFE=90°,

∴∠ABO+∠BEF=90°,

又∵∠BEF=∠GEA,

∴∠GAE=∠BEF,

∴∠BAO+∠GAE=90°,

即AG与⊙O相切.

(2)解:∵BC为直径,

∴∠BAC=90°,AC=6,AB=8,

∴BC=10,

∵∠EBF=∠CBA,∠BFE=∠BAC,

∴△BEF∽△BCA,

==

∴EF=1.8,BF=2.4,

∴0F=0B﹣BF=5﹣2.4=2.6,

∴OE==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


不等式组的最小整数解是(  )

 

A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:初中数学 来源: 题型:


设a,b,c,d为实数,现规定一种新的运算=ad﹣bc,则满足等式=1的x的值为 

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:tan45°﹣﹣1)0= 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.

(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)

(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是某个几何体的三视图,该几何体是(  )

 

A.

长方体

B.

三棱柱

C.

正方体

D.

圆柱

查看答案和解析>>

科目:初中数学 来源: 题型:


全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽,将数577 000 000 000 000用科学记数法表示为 

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3).

(1)求抛物线的表达式及顶点D的坐标;

(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;

(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:


计算:2tan60°﹣|﹣2|﹣+(﹣1

查看答案和解析>>

同步练习册答案