精英家教网 > 初中数学 > 题目详情
正整数N的各位数字只有1或0组成,且225|N,则N的最小值是
11 111 111 100
11 111 111 100
分析:由225=25×9,能被25整除的只由1或0组成的最小数为100,111 111 111被9整除的最小数,
解答:解:225=25×9,能被25整除的只由1或0组成的最小数为100,11除以余2,111除以9余3,…,111 111 111就能被9整除,
所以N的最小值是11 111 111 100.
故答案为:11 111 111 100.
点评:本题考查了整数的整除性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、若f(n)为n2+1(n为正整数)的各位数字之和,如:62+1=37,则f(6)=3+7=10.记f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n)),k为正整数,则f2011(8)=
11

查看答案和解析>>

科目:初中数学 来源: 题型:

若f(n)为n2+1(n是任意正整数)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k是正整数,则f2010(11)=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.

查看答案和解析>>

同步练习册答案