精英家教网 > 初中数学 > 题目详情

如图,在直角坐标系中,△AOB是边长为2的等边三角形,设直线x=t(0≤t≤2)截这个三角形可得位于此直线左方的图形的面积为y,则y关于t的函数图象大致是


  1. A.
  2. B.
  3. C.
  4. D.
D
分析:等边△AOB中,l∥y轴,所以很容易求得∠OCB=30°;进而证明OD=t,CD=t;最后根据三角形的面积公式,解答出y与t之间的函数关系式,由函数解析式来选择图象.
解答:①∵l∥y轴,△AOB为等边三角形,

∴∠OCB=30°,
∴OD=t,CD=t;
∴S△OCD=×OD×CD
=t2(0≤t≤1),
即y=t2(0≤t≤1).
故y与t之间的函数关系的图象应为定义域为[0,1]、开口向上的二次函数图象;
②∵l∥y轴,△AOB为等边三角形

∴∠CBD=30°,
∴BD=2-t,CD=(2-t);
∴S△BCD=×BD×CD
=(2-t)2(0≤t≤1),
即y=-(2-t)2(0≤t≤1)=.
故y与t之间的函数关系的图象应为定义域为[1,2]、开口向下的二次函数图象;
故选D.
点评:本题主要考查的是二次函数解析式的求法及二次函数的图象特征.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案